|
|
|
|
|
CHE531 - CHEMISTRY V-PHYSICAL CHEMISTRY (2022 Batch) | |
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
Max Marks:100 |
Credits:03 |
Course Objectives/Course Description |
|
Course Description: This course includes important physical topics that describe the influence of electricity and electromagnetic radiation on matter. Ionic equilibria and Electrochemistry relate to the formation of ions and their ability to migrate under the influence of electricity. Spectroscopy and Photochemistry are the topics that discuss the interaction of radiation with matter and are the foundation for many analytical techniques today.
|
|
Learning Outcome |
|
CO1: Explain the concepts of ionic equilibria, electrochemistry, spectroscopy, and photochemistry CO2: Interpret the spectroscopic responses of organic and inorganic molecules. CO3: Solve problems based on ionic equilibria, electrochemistry, and photochemistry. CO4: Discuss the kinetics of photochemical reactions. |
Unit-1 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
1. Ionic Equilibria
|
||||||||||||||||||||||||||||||||||||
Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water. Ionization of weak acids and bases, pH scale, common ion effect. Salt hydrolysis-calculation of hydrolysis constant, degree of hydrolysis and pH for different salts. Buffer solutions, mechanism of buffer action and preparation of buffers. Henderson equation and calculation of pH of a buffer. Solubility and solubility product of sparingly soluble salts – applications of solubility product principle. Ionic product, common ion effect and solubility product in qualitative analysis.Conditions for precipitation. | ||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
1. Ionic Equilibria
|
||||||||||||||||||||||||||||||||||||
Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water. Ionization of weak acids and bases, pH scale, common ion effect. Salt hydrolysis-calculation of hydrolysis constant, degree of hydrolysis and pH for different salts. Buffer solutions, mechanism of buffer action and preparation of buffers. Henderson equation and calculation of pH of a buffer. Solubility and solubility product of sparingly soluble salts – applications of solubility product principle. Ionic product, common ion effect and solubility product in qualitative analysis.Conditions for precipitation. | ||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
1. Ionic Equilibria
|
||||||||||||||||||||||||||||||||||||
Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water. Ionization of weak acids and bases, pH scale, common ion effect. Salt hydrolysis-calculation of hydrolysis constant, degree of hydrolysis and pH for different salts. Buffer solutions, mechanism of buffer action and preparation of buffers. Henderson equation and calculation of pH of a buffer. Solubility and solubility product of sparingly soluble salts – applications of solubility product principle. Ionic product, common ion effect and solubility product in qualitative analysis.Conditions for precipitation. | ||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
1. Ionic Equilibria
|
||||||||||||||||||||||||||||||||||||
Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water. Ionization of weak acids and bases, pH scale, common ion effect. Salt hydrolysis-calculation of hydrolysis constant, degree of hydrolysis and pH for different salts. Buffer solutions, mechanism of buffer action and preparation of buffers. Henderson equation and calculation of pH of a buffer. Solubility and solubility product of sparingly soluble salts – applications of solubility product principle. Ionic product, common ion effect and solubility product in qualitative analysis.Conditions for precipitation. | ||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
2. Electrochemistry I
|
||||||||||||||||||||||||||||||||||||
Prelearning topics: Conductivity, equivalent and molar conductivity and their variation with dilution for weak and strong electrolytes. Kohlrausch law of independent migration of ions. Transference number and its experimental determination using Moving boundary methods. Ionic mobility. Applications of conductance measurements: determination of degree of ionization of weak electrolyte, solubility and solubility products of sparingly soluble salts, ionic product of water, hydrolysis constant of a salt using conductivity studies. Conductometric titrations* (only acid-base-four types).Numericals based on above topics. | ||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
2. Electrochemistry I
|
||||||||||||||||||||||||||||||||||||
Prelearning topics: Conductivity, equivalent and molar conductivity and their variation with dilution for weak and strong electrolytes. Kohlrausch law of independent migration of ions. Transference number and its experimental determination using Moving boundary methods. Ionic mobility. Applications of conductance measurements: determination of degree of ionization of weak electrolyte, solubility and solubility products of sparingly soluble salts, ionic product of water, hydrolysis constant of a salt using conductivity studies. Conductometric titrations* (only acid-base-four types).Numericals based on above topics. | ||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
2. Electrochemistry I
|
||||||||||||||||||||||||||||||||||||
Prelearning topics: Conductivity, equivalent and molar conductivity and their variation with dilution for weak and strong electrolytes. Kohlrausch law of independent migration of ions. Transference number and its experimental determination using Moving boundary methods. Ionic mobility. Applications of conductance measurements: determination of degree of ionization of weak electrolyte, solubility and solubility products of sparingly soluble salts, ionic product of water, hydrolysis constant of a salt using conductivity studies. Conductometric titrations* (only acid-base-four types).Numericals based on above topics. | ||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
2. Electrochemistry I
|
||||||||||||||||||||||||||||||||||||
Prelearning topics: Conductivity, equivalent and molar conductivity and their variation with dilution for weak and strong electrolytes. Kohlrausch law of independent migration of ions. Transference number and its experimental determination using Moving boundary methods. Ionic mobility. Applications of conductance measurements: determination of degree of ionization of weak electrolyte, solubility and solubility products of sparingly soluble salts, ionic product of water, hydrolysis constant of a salt using conductivity studies. Conductometric titrations* (only acid-base-four types).Numericals based on above topics. | ||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
3. Electrochemistry II
|
||||||||||||||||||||||||||||||||||||
Prelearning topics: Electrode potential, Standard electrode potential, electrochemical series, types of electrodes. Reversible and irreversible cells. Concept of EMF of a cell. Measurement of EMF of a cell. Nernst equation and its importance. Thermodynamics of a reversible cell, calculation of thermodynamic properties: ΔG, ΔH and ΔS from EMF data. Calculation of equilibrium constant from EMF data. Concentration cells with transference and without transference. Liquid junction potential and salt bridge. pH determination using hydrogen electrode, quinhydrone electrode and glass electrode. Potentiometric titrations-qualitative treatment (acid-base and oxidation-reduction only). | ||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
3. Electrochemistry II
|
||||||||||||||||||||||||||||||||||||
Prelearning topics: Electrode potential, Standard electrode potential, electrochemical series, types of electrodes. Reversible and irreversible cells. Concept of EMF of a cell. Measurement of EMF of a cell. Nernst equation and its importance. Thermodynamics of a reversible cell, calculation of thermodynamic properties: ΔG, ΔH and ΔS from EMF data. Calculation of equilibrium constant from EMF data. Concentration cells with transference and without transference. Liquid junction potential and salt bridge. pH determination using hydrogen electrode, quinhydrone electrode and glass electrode. Potentiometric titrations-qualitative treatment (acid-base and oxidation-reduction only). | ||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
3. Electrochemistry II
|
||||||||||||||||||||||||||||||||||||
Prelearning topics: Electrode potential, Standard electrode potential, electrochemical series, types of electrodes. Reversible and irreversible cells. Concept of EMF of a cell. Measurement of EMF of a cell. Nernst equation and its importance. Thermodynamics of a reversible cell, calculation of thermodynamic properties: ΔG, ΔH and ΔS from EMF data. Calculation of equilibrium constant from EMF data. Concentration cells with transference and without transference. Liquid junction potential and salt bridge. pH determination using hydrogen electrode, quinhydrone electrode and glass electrode. Potentiometric titrations-qualitative treatment (acid-base and oxidation-reduction only). | ||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
3. Electrochemistry II
|
||||||||||||||||||||||||||||||||||||
Prelearning topics: Electrode potential, Standard electrode potential, electrochemical series, types of electrodes. Reversible and irreversible cells. Concept of EMF of a cell. Measurement of EMF of a cell. Nernst equation and its importance. Thermodynamics of a reversible cell, calculation of thermodynamic properties: ΔG, ΔH and ΔS from EMF data. Calculation of equilibrium constant from EMF data. Concentration cells with transference and without transference. Liquid junction potential and salt bridge. pH determination using hydrogen electrode, quinhydrone electrode and glass electrode. Potentiometric titrations-qualitative treatment (acid-base and oxidation-reduction only). | ||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:18 |
|||||||||||||||||||||||||||||||||||
4. Molecular Spectroscopy
|
||||||||||||||||||||||||||||||||||||
Pre learning: Electromagnetic spectrum, Wave nature of electromagnetic radiation. Wavelength, Frequency, wavenumber, relation between them. Origin of molecular spectra : Study of rotation, vibration spectra of diatomic molecules. Born-Oppenheimer approximation. Degrees of freedom. Rotational spectroscopy : Expression for rotational energy. Evaluation of internuclear distance from moment of inertia- problems. Criterion for absorption of radiation - selection rule. Application of microwave spectroscopy. Vibrational Spectroscopy : Expression for potential energy of simple harmonic oscillator–Hooke’s law. Expression for vibrational energy. Zero point energy. Concept of force constant-its evaluation-problems. Degrees of freedom-modes of vibration for CO2 and H2O molecules. Vibration - rotation spectra PQR bands. Raman Spectroscopy : Concept of Polarisability. Raman spectra-qualitative study. Stokes and anti-Stokes lines-selection rules. Advantages of Raman spectroscopy over IR spectroscopy. Electronic spectroscopy: Potential energy curves for bonding and antibonding orbitals. Electronic transitions, qualitative description of σ, Π and non-bonding orbitals and transitions between them. Selection rules and Franck-Condon principle. Magnetic resonance spectroscopy: NMR spectroscopy (Only principles to be discussed). ESR spectroscopy, NQR spectroscopy and Mossbaur spectroscopy. (Mention only) | ||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:18 |
|||||||||||||||||||||||||||||||||||
4. Molecular Spectroscopy
|
||||||||||||||||||||||||||||||||||||
Pre learning: Electromagnetic spectrum, Wave nature of electromagnetic radiation. Wavelength, Frequency, wavenumber, relation between them. Origin of molecular spectra : Study of rotation, vibration spectra of diatomic molecules. Born-Oppenheimer approximation. Degrees of freedom. Rotational spectroscopy : Expression for rotational energy. Evaluation of internuclear distance from moment of inertia- problems. Criterion for absorption of radiation - selection rule. Application of microwave spectroscopy. Vibrational Spectroscopy : Expression for potential energy of simple harmonic oscillator–Hooke’s law. Expression for vibrational energy. Zero point energy. Concept of force constant-its evaluation-problems. Degrees of freedom-modes of vibration for CO2 and H2O molecules. Vibration - rotation spectra PQR bands. Raman Spectroscopy : Concept of Polarisability. Raman spectra-qualitative study. Stokes and anti-Stokes lines-selection rules. Advantages of Raman spectroscopy over IR spectroscopy. Electronic spectroscopy: Potential energy curves for bonding and antibonding orbitals. Electronic transitions, qualitative description of σ, Π and non-bonding orbitals and transitions between them. Selection rules and Franck-Condon principle. Magnetic resonance spectroscopy: NMR spectroscopy (Only principles to be discussed). ESR spectroscopy, NQR spectroscopy and Mossbaur spectroscopy. (Mention only) | ||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:18 |
|||||||||||||||||||||||||||||||||||
4. Molecular Spectroscopy
|
||||||||||||||||||||||||||||||||||||
Pre learning: Electromagnetic spectrum, Wave nature of electromagnetic radiation. Wavelength, Frequency, wavenumber, relation between them. Origin of molecular spectra : Study of rotation, vibration spectra of diatomic molecules. Born-Oppenheimer approximation. Degrees of freedom. Rotational spectroscopy : Expression for rotational energy. Evaluation of internuclear distance from moment of inertia- problems. Criterion for absorption of radiation - selection rule. Application of microwave spectroscopy. Vibrational Spectroscopy : Expression for potential energy of simple harmonic oscillator–Hooke’s law. Expression for vibrational energy. Zero point energy. Concept of force constant-its evaluation-problems. Degrees of freedom-modes of vibration for CO2 and H2O molecules. Vibration - rotation spectra PQR bands. Raman Spectroscopy : Concept of Polarisability. Raman spectra-qualitative study. Stokes and anti-Stokes lines-selection rules. Advantages of Raman spectroscopy over IR spectroscopy. Electronic spectroscopy: Potential energy curves for bonding and antibonding orbitals. Electronic transitions, qualitative description of σ, Π and non-bonding orbitals and transitions between them. Selection rules and Franck-Condon principle. Magnetic resonance spectroscopy: NMR spectroscopy (Only principles to be discussed). ESR spectroscopy, NQR spectroscopy and Mossbaur spectroscopy. (Mention only) | ||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:18 |
|||||||||||||||||||||||||||||||||||
4. Molecular Spectroscopy
|
||||||||||||||||||||||||||||||||||||
Pre learning: Electromagnetic spectrum, Wave nature of electromagnetic radiation. Wavelength, Frequency, wavenumber, relation between them. Origin of molecular spectra : Study of rotation, vibration spectra of diatomic molecules. Born-Oppenheimer approximation. Degrees of freedom. Rotational spectroscopy : Expression for rotational energy. Evaluation of internuclear distance from moment of inertia- problems. Criterion for absorption of radiation - selection rule. Application of microwave spectroscopy. Vibrational Spectroscopy : Expression for potential energy of simple harmonic oscillator–Hooke’s law. Expression for vibrational energy. Zero point energy. Concept of force constant-its evaluation-problems. Degrees of freedom-modes of vibration for CO2 and H2O molecules. Vibration - rotation spectra PQR bands. Raman Spectroscopy : Concept of Polarisability. Raman spectra-qualitative study. Stokes and anti-Stokes lines-selection rules. Advantages of Raman spectroscopy over IR spectroscopy. Electronic spectroscopy: Potential energy curves for bonding and antibonding orbitals. Electronic transitions, qualitative description of σ, Π and non-bonding orbitals and transitions between them. Selection rules and Franck-Condon principle. Magnetic resonance spectroscopy: NMR spectroscopy (Only principles to be discussed). ESR spectroscopy, NQR spectroscopy and Mossbaur spectroscopy. (Mention only) | ||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:6 |
|||||||||||||||||||||||||||||||||||
5. Photochemistry
|
||||||||||||||||||||||||||||||||||||
Consequences of light absorption: The Jablonski Diagram, Laws of photochemistry: Grotthuss-Draper law, Stark-Einstein law, Differences between photophysical and photochemical processes with examples. Comparison of photochemical and thermal reactions. Kinetics of photochemical reactions: (1) Kinetics of Hydrogen-Chlorine reaction (2) Kinetics of Hydrogen-Bromine reaction (4) Kinetics of dimerisation of anthracene. Photosensitization, photostationary equilibrium. Singlet and triplet states-Fluorescence, Phosphorescence, Luminescence, Bioluminescence, chemical sensors.Beer-Lambert’s law: Absorption coefficient and molar extinction coefficient. Applications.Laser, classification and uses. Numericals based on relevant topics | ||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:6 |
|||||||||||||||||||||||||||||||||||
5. Photochemistry
|
||||||||||||||||||||||||||||||||||||
Consequences of light absorption: The Jablonski Diagram, Laws of photochemistry: Grotthuss-Draper law, Stark-Einstein law, Differences between photophysical and photochemical processes with examples. Comparison of photochemical and thermal reactions. Kinetics of photochemical reactions: (1) Kinetics of Hydrogen-Chlorine reaction (2) Kinetics of Hydrogen-Bromine reaction (4) Kinetics of dimerisation of anthracene. Photosensitization, photostationary equilibrium. Singlet and triplet states-Fluorescence, Phosphorescence, Luminescence, Bioluminescence, chemical sensors.Beer-Lambert’s law: Absorption coefficient and molar extinction coefficient. Applications.Laser, classification and uses. Numericals based on relevant topics | ||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:6 |
|||||||||||||||||||||||||||||||||||
5. Photochemistry
|
||||||||||||||||||||||||||||||||||||
Consequences of light absorption: The Jablonski Diagram, Laws of photochemistry: Grotthuss-Draper law, Stark-Einstein law, Differences between photophysical and photochemical processes with examples. Comparison of photochemical and thermal reactions. Kinetics of photochemical reactions: (1) Kinetics of Hydrogen-Chlorine reaction (2) Kinetics of Hydrogen-Bromine reaction (4) Kinetics of dimerisation of anthracene. Photosensitization, photostationary equilibrium. Singlet and triplet states-Fluorescence, Phosphorescence, Luminescence, Bioluminescence, chemical sensors.Beer-Lambert’s law: Absorption coefficient and molar extinction coefficient. Applications.Laser, classification and uses. Numericals based on relevant topics | ||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:6 |
|||||||||||||||||||||||||||||||||||
5. Photochemistry
|
||||||||||||||||||||||||||||||||||||
Consequences of light absorption: The Jablonski Diagram, Laws of photochemistry: Grotthuss-Draper law, Stark-Einstein law, Differences between photophysical and photochemical processes with examples. Comparison of photochemical and thermal reactions. Kinetics of photochemical reactions: (1) Kinetics of Hydrogen-Chlorine reaction (2) Kinetics of Hydrogen-Bromine reaction (4) Kinetics of dimerisation of anthracene. Photosensitization, photostationary equilibrium. Singlet and triplet states-Fluorescence, Phosphorescence, Luminescence, Bioluminescence, chemical sensors.Beer-Lambert’s law: Absorption coefficient and molar extinction coefficient. Applications.Laser, classification and uses. Numericals based on relevant topics | ||||||||||||||||||||||||||||||||||||
Text Books And Reference Books:
B R Puri, L R Sharma and M.S. Patania., Principles of Physical Chemistry. Vishal Publishing Company, Jalandhar. 2011. | ||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading 1. Barrow, G.M. Physical Chemistry Tata McGraw‐Hill (2007). 2. Castellan, G.W. Physical Chemistry 4th Ed. Narosa (2004). 3. P. W Atkins, Physical chemistry, 8th ed., Oxford University Press, 2006. 4. G. M. Barrow Physical chemistry, 5th ed., Tata-Mc Graw Hill, 2006. 5. Glasstone Samuel,Textbook of Physical Chemistry. 2nd ed. Mcmillan, 2007. 6. F Daniels and F.A Alberty. Physical Chemistry. 4th ed. Wiley, 1996. 7. C. N. Banwell and E.M. Mccash, Fundamentals of Molecular Spectroscopy, TMH Edition, 2012. 8. B R Puri, L R Sharma and M.S. Patania., Principles of Physical Chemistry. Vishal Publishing Company, Jalandhar. 2011. | ||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| ||||||||||||||||||||||||||||||||||||
CHE541A - CHEMISTRY VA-ORGANIC CHEMISTRY (2022 Batch) | ||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
|||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
|||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
||||||||||||||||||||||||||||||||||||
Course Description: This course deals with various topics of determining reaction mechanisms, spectroscopy, chemistry of soaps, detergents and dyes. This course on stereochemistry intends to make the students understand different concepts of conformational analysis and optical isomerism.
|
||||||||||||||||||||||||||||||||||||
Learning Outcome |
||||||||||||||||||||||||||||||||||||
CO1: On completion of this course the students will be able to
Illustrate the stereochemistry of organic molecules, chemistry of soaps, detergents and dyes CO2: Explain the concepts related to research methodologies and research publications. CO3: Analyse the organic compounds using spectroscopic techniques CO4: Interpret the reaction mechanisms. |
Unit-1 |
Teaching Hours:11 |
|||||||||||||||||||||||||||||||||||
Stereochemistry
|
||||||||||||||||||||||||||||||||||||
Conformational analysis with respect to ethane, propane, butane, and cyclohexane. Interconversion of Wedge Formula, Newman, Sawhorse and Fischer representations. Difference between configuration and conformation. Concept of isomerism, *types of isomerism, optical isomerism, elements of symmetry, molecular chirality, enantiomers, stereogenic centers, optical activity, properties of enantiomers, chiral and achiral molecules with two stereogenic centers, distereoisomers, mesocompounds, resolution of enantiomers, racemization. Optical activity in compounds not containing asymmetric Carbon- biphenyls, allenes. Relative and absolute configurations, sequence rules, D & L, R & S systems of assigning configuration. Geometrical isomerism; Nomenclature by E and Z system. | ||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:11 |
|||||||||||||||||||||||||||||||||||
Stereochemistry
|
||||||||||||||||||||||||||||||||||||
Conformational analysis with respect to ethane, propane, butane, and cyclohexane. Interconversion of Wedge Formula, Newman, Sawhorse and Fischer representations. Difference between configuration and conformation. Concept of isomerism, *types of isomerism, optical isomerism, elements of symmetry, molecular chirality, enantiomers, stereogenic centers, optical activity, properties of enantiomers, chiral and achiral molecules with two stereogenic centers, distereoisomers, mesocompounds, resolution of enantiomers, racemization. Optical activity in compounds not containing asymmetric Carbon- biphenyls, allenes. Relative and absolute configurations, sequence rules, D & L, R & S systems of assigning configuration. Geometrical isomerism; Nomenclature by E and Z system. | ||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:11 |
|||||||||||||||||||||||||||||||||||
Stereochemistry
|
||||||||||||||||||||||||||||||||||||
Conformational analysis with respect to ethane, propane, butane, and cyclohexane. Interconversion of Wedge Formula, Newman, Sawhorse and Fischer representations. Difference between configuration and conformation. Concept of isomerism, *types of isomerism, optical isomerism, elements of symmetry, molecular chirality, enantiomers, stereogenic centers, optical activity, properties of enantiomers, chiral and achiral molecules with two stereogenic centers, distereoisomers, mesocompounds, resolution of enantiomers, racemization. Optical activity in compounds not containing asymmetric Carbon- biphenyls, allenes. Relative and absolute configurations, sequence rules, D & L, R & S systems of assigning configuration. Geometrical isomerism; Nomenclature by E and Z system. | ||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:11 |
|||||||||||||||||||||||||||||||||||
Stereochemistry
|
||||||||||||||||||||||||||||||||||||
Conformational analysis with respect to ethane, propane, butane, and cyclohexane. Interconversion of Wedge Formula, Newman, Sawhorse and Fischer representations. Difference between configuration and conformation. Concept of isomerism, *types of isomerism, optical isomerism, elements of symmetry, molecular chirality, enantiomers, stereogenic centers, optical activity, properties of enantiomers, chiral and achiral molecules with two stereogenic centers, distereoisomers, mesocompounds, resolution of enantiomers, racemization. Optical activity in compounds not containing asymmetric Carbon- biphenyls, allenes. Relative and absolute configurations, sequence rules, D & L, R & S systems of assigning configuration. Geometrical isomerism; Nomenclature by E and Z system. | ||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:11 |
|||||||||||||||||||||||||||||||||||
. Structure Elucidation of organic molecules Using Spectral Data
|
||||||||||||||||||||||||||||||||||||
Application of spectral techniques in the structural elucidation of organic compounds. UV-Vis: λmax calculation for dienes and α,β unsaturated carbonyl compounds - UV spectra of butadiene, acetone, methyl vinyl ketone and benzene. IR: Concept of group frequencies - IR spectra of alcohols, phenols, amines, ethers, aldehydes, ketones, carboxylic acids, esters and amides. 1H NMR: Nuclear magnetic resonance.chemical shift (δ values), uses of TMS as reference. Nuclear shielding and deshielding effects.Equivalent and non-equivalent protons.Effect of electronegativity of adjacent atoms on chemical shift values.Spin-spin splitting and spin-spin coupling (qualitative treatment only). Applications of NMR spectroscopy including identification of simple organic molecules. Examples: Shielding and deshielding effects for (i) methane (ii) CH3−Cl (iii) CH2Cl2 (iv) CHCl3. Spin-spin coupling in (i) Cl2CHCHO (ii) 1,1,2-trichloroethane (iii) CH3CH2Cl. Mass Spectrometry: Introduction. EI ionisation. Determination of molecular mass by MS (elementary idea only – fragmentation study not required). | ||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:11 |
|||||||||||||||||||||||||||||||||||
. Structure Elucidation of organic molecules Using Spectral Data
|
||||||||||||||||||||||||||||||||||||
Application of spectral techniques in the structural elucidation of organic compounds. UV-Vis: λmax calculation for dienes and α,β unsaturated carbonyl compounds - UV spectra of butadiene, acetone, methyl vinyl ketone and benzene. IR: Concept of group frequencies - IR spectra of alcohols, phenols, amines, ethers, aldehydes, ketones, carboxylic acids, esters and amides. 1H NMR: Nuclear magnetic resonance.chemical shift (δ values), uses of TMS as reference. Nuclear shielding and deshielding effects.Equivalent and non-equivalent protons.Effect of electronegativity of adjacent atoms on chemical shift values.Spin-spin splitting and spin-spin coupling (qualitative treatment only). Applications of NMR spectroscopy including identification of simple organic molecules. Examples: Shielding and deshielding effects for (i) methane (ii) CH3−Cl (iii) CH2Cl2 (iv) CHCl3. Spin-spin coupling in (i) Cl2CHCHO (ii) 1,1,2-trichloroethane (iii) CH3CH2Cl. Mass Spectrometry: Introduction. EI ionisation. Determination of molecular mass by MS (elementary idea only – fragmentation study not required). | ||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:11 |
|||||||||||||||||||||||||||||||||||
. Structure Elucidation of organic molecules Using Spectral Data
|
||||||||||||||||||||||||||||||||||||
Application of spectral techniques in the structural elucidation of organic compounds. UV-Vis: λmax calculation for dienes and α,β unsaturated carbonyl compounds - UV spectra of butadiene, acetone, methyl vinyl ketone and benzene. IR: Concept of group frequencies - IR spectra of alcohols, phenols, amines, ethers, aldehydes, ketones, carboxylic acids, esters and amides. 1H NMR: Nuclear magnetic resonance.chemical shift (δ values), uses of TMS as reference. Nuclear shielding and deshielding effects.Equivalent and non-equivalent protons.Effect of electronegativity of adjacent atoms on chemical shift values.Spin-spin splitting and spin-spin coupling (qualitative treatment only). Applications of NMR spectroscopy including identification of simple organic molecules. Examples: Shielding and deshielding effects for (i) methane (ii) CH3−Cl (iii) CH2Cl2 (iv) CHCl3. Spin-spin coupling in (i) Cl2CHCHO (ii) 1,1,2-trichloroethane (iii) CH3CH2Cl. Mass Spectrometry: Introduction. EI ionisation. Determination of molecular mass by MS (elementary idea only – fragmentation study not required). | ||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:11 |
|||||||||||||||||||||||||||||||||||
. Structure Elucidation of organic molecules Using Spectral Data
|
||||||||||||||||||||||||||||||||||||
Application of spectral techniques in the structural elucidation of organic compounds. UV-Vis: λmax calculation for dienes and α,β unsaturated carbonyl compounds - UV spectra of butadiene, acetone, methyl vinyl ketone and benzene. IR: Concept of group frequencies - IR spectra of alcohols, phenols, amines, ethers, aldehydes, ketones, carboxylic acids, esters and amides. 1H NMR: Nuclear magnetic resonance.chemical shift (δ values), uses of TMS as reference. Nuclear shielding and deshielding effects.Equivalent and non-equivalent protons.Effect of electronegativity of adjacent atoms on chemical shift values.Spin-spin splitting and spin-spin coupling (qualitative treatment only). Applications of NMR spectroscopy including identification of simple organic molecules. Examples: Shielding and deshielding effects for (i) methane (ii) CH3−Cl (iii) CH2Cl2 (iv) CHCl3. Spin-spin coupling in (i) Cl2CHCHO (ii) 1,1,2-trichloroethane (iii) CH3CH2Cl. Mass Spectrometry: Introduction. EI ionisation. Determination of molecular mass by MS (elementary idea only – fragmentation study not required). | ||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:7 |
|||||||||||||||||||||||||||||||||||
Methods of Proposing Reaction Mechanism
|
||||||||||||||||||||||||||||||||||||
Guidelines for proposing a reasonable mechanism, product studies, bonds broken and formed, inter and intramolecular migration of groups, crossover experiments, exchange with solvents, importance of byproducts, reactive intermediates, energetics, importance of activation parameters. Isotopic substitution in a molecule, primary and secondary kinetic isotope effects - their importance in mechanistic studies. | ||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:7 |
|||||||||||||||||||||||||||||||||||
Methods of Proposing Reaction Mechanism
|
||||||||||||||||||||||||||||||||||||
Guidelines for proposing a reasonable mechanism, product studies, bonds broken and formed, inter and intramolecular migration of groups, crossover experiments, exchange with solvents, importance of byproducts, reactive intermediates, energetics, importance of activation parameters. Isotopic substitution in a molecule, primary and secondary kinetic isotope effects - their importance in mechanistic studies. | ||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:7 |
|||||||||||||||||||||||||||||||||||
Methods of Proposing Reaction Mechanism
|
||||||||||||||||||||||||||||||||||||
Guidelines for proposing a reasonable mechanism, product studies, bonds broken and formed, inter and intramolecular migration of groups, crossover experiments, exchange with solvents, importance of byproducts, reactive intermediates, energetics, importance of activation parameters. Isotopic substitution in a molecule, primary and secondary kinetic isotope effects - their importance in mechanistic studies. | ||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:7 |
|||||||||||||||||||||||||||||||||||
Methods of Proposing Reaction Mechanism
|
||||||||||||||||||||||||||||||||||||
Guidelines for proposing a reasonable mechanism, product studies, bonds broken and formed, inter and intramolecular migration of groups, crossover experiments, exchange with solvents, importance of byproducts, reactive intermediates, energetics, importance of activation parameters. Isotopic substitution in a molecule, primary and secondary kinetic isotope effects - their importance in mechanistic studies. | ||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:6 |
|||||||||||||||||||||||||||||||||||
Dyes
|
||||||||||||||||||||||||||||||||||||
Theories of colour and chemical constitution. Classification of dyes – according to chemical constitution and method of application. Natural and synthetic dyes. Synthesis and applications of: Azo dyes – Methyl orange; Triphenyl methane dyes - Malachite green and Rosaniline; Edible dyes (Food colours) with examples. | ||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:6 |
|||||||||||||||||||||||||||||||||||
Dyes
|
||||||||||||||||||||||||||||||||||||
Theories of colour and chemical constitution. Classification of dyes – according to chemical constitution and method of application. Natural and synthetic dyes. Synthesis and applications of: Azo dyes – Methyl orange; Triphenyl methane dyes - Malachite green and Rosaniline; Edible dyes (Food colours) with examples. | ||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:6 |
|||||||||||||||||||||||||||||||||||
Dyes
|
||||||||||||||||||||||||||||||||||||
Theories of colour and chemical constitution. Classification of dyes – according to chemical constitution and method of application. Natural and synthetic dyes. Synthesis and applications of: Azo dyes – Methyl orange; Triphenyl methane dyes - Malachite green and Rosaniline; Edible dyes (Food colours) with examples. | ||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:6 |
|||||||||||||||||||||||||||||||||||
Dyes
|
||||||||||||||||||||||||||||||||||||
Theories of colour and chemical constitution. Classification of dyes – according to chemical constitution and method of application. Natural and synthetic dyes. Synthesis and applications of: Azo dyes – Methyl orange; Triphenyl methane dyes - Malachite green and Rosaniline; Edible dyes (Food colours) with examples. | ||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Soaps and Detergents
|
||||||||||||||||||||||||||||||||||||
Soaps – Introduction. Types of soaps - Toilet soaps, washing soaps. Liquid soap. TFM and grades of soaps. Bathing bars. Cleansing action of soap. Detergents - Introduction. Types of detergents - anionic, cationic, non-ionic and amphoteric detergents. Common detergent additives. Enzymes used in commercial detergents. Comparison between soaps and detergents. Environmental aspects | ||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Soaps and Detergents
|
||||||||||||||||||||||||||||||||||||
Soaps – Introduction. Types of soaps - Toilet soaps, washing soaps. Liquid soap. TFM and grades of soaps. Bathing bars. Cleansing action of soap. Detergents - Introduction. Types of detergents - anionic, cationic, non-ionic and amphoteric detergents. Common detergent additives. Enzymes used in commercial detergents. Comparison between soaps and detergents. Environmental aspects | ||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Soaps and Detergents
|
||||||||||||||||||||||||||||||||||||
Soaps – Introduction. Types of soaps - Toilet soaps, washing soaps. Liquid soap. TFM and grades of soaps. Bathing bars. Cleansing action of soap. Detergents - Introduction. Types of detergents - anionic, cationic, non-ionic and amphoteric detergents. Common detergent additives. Enzymes used in commercial detergents. Comparison between soaps and detergents. Environmental aspects | ||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Soaps and Detergents
|
||||||||||||||||||||||||||||||||||||
Soaps – Introduction. Types of soaps - Toilet soaps, washing soaps. Liquid soap. TFM and grades of soaps. Bathing bars. Cleansing action of soap. Detergents - Introduction. Types of detergents - anionic, cationic, non-ionic and amphoteric detergents. Common detergent additives. Enzymes used in commercial detergents. Comparison between soaps and detergents. Environmental aspects | ||||||||||||||||||||||||||||||||||||
Unit-6 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Soaps ? Introduction. Types of soaps - Toilet soaps, washing soaps. Liquid soap. TFM and grades of soaps. Bathing bars. Cleansing action of soap. Detergents - Introduction. Types of detergents - anionic, cationic, non-ionic and amphoteric detergents.
|
||||||||||||||||||||||||||||||||||||
Introduction – meaning of research. Types of research, research methods vs methodology. Scientific method of conducting research. Review of literature. Selecting and defining a problem. Science journals. Impact factor, citation and citation index. Indexing agencies (Scopus, Web of Science), Research proposals | ||||||||||||||||||||||||||||||||||||
Unit-6 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Soaps ? Introduction. Types of soaps - Toilet soaps, washing soaps. Liquid soap. TFM and grades of soaps. Bathing bars. Cleansing action of soap. Detergents - Introduction. Types of detergents - anionic, cationic, non-ionic and amphoteric detergents.
|
||||||||||||||||||||||||||||||||||||
Introduction – meaning of research. Types of research, research methods vs methodology. Scientific method of conducting research. Review of literature. Selecting and defining a problem. Science journals. Impact factor, citation and citation index. Indexing agencies (Scopus, Web of Science), Research proposals | ||||||||||||||||||||||||||||||||||||
Unit-6 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Soaps ? Introduction. Types of soaps - Toilet soaps, washing soaps. Liquid soap. TFM and grades of soaps. Bathing bars. Cleansing action of soap. Detergents - Introduction. Types of detergents - anionic, cationic, non-ionic and amphoteric detergents.
|
||||||||||||||||||||||||||||||||||||
Introduction – meaning of research. Types of research, research methods vs methodology. Scientific method of conducting research. Review of literature. Selecting and defining a problem. Science journals. Impact factor, citation and citation index. Indexing agencies (Scopus, Web of Science), Research proposals | ||||||||||||||||||||||||||||||||||||
Unit-6 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Soaps ? Introduction. Types of soaps - Toilet soaps, washing soaps. Liquid soap. TFM and grades of soaps. Bathing bars. Cleansing action of soap. Detergents - Introduction. Types of detergents - anionic, cationic, non-ionic and amphoteric detergents.
|
||||||||||||||||||||||||||||||||||||
Introduction – meaning of research. Types of research, research methods vs methodology. Scientific method of conducting research. Review of literature. Selecting and defining a problem. Science journals. Impact factor, citation and citation index. Indexing agencies (Scopus, Web of Science), Research proposals | ||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: [1] Ashutosh, K., Chemistry of natural products Vol. I, CBS Publications & Distributors 1st Edition 2010. [2] Ashutosh, K., Chemistry of natural products Vol. II, CBS Publications & Distributors 1st Edition 2012. [3] Bhat, S., Nagasampagi B., Sivakumar M., Chemistry of natural productsNarosa Publishing House New Delhi 2005. [4] Ahluwalia, V. K. Heterocyclic Chemistry, Narosa Publishing House New Delhi, 2016. [5]Bahl, A. & Bahl, B.S. Advanced Organic Chemistry, S. Chand, 2010. [6]B. Mehta, M. Mehta, Organic Chemistry, PHI Learning Private Limited, 2017.
| ||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading [1] S.M. Mukherji, S. P. Singh, and R. P. Kapoor.Organic Chemistry. 3rd, 12th Reprint, New Delhi: New Age International (P) Ltd. Publishers, 2009. [2] I. L Finar, Organic Chemistry Vol. II, 5thed. New Delhi: ELBS and Longman Ltd., reprint 2008. [3] Jain and Sharma Modern Organic Chemistry 3rd edition, Vishal Publishing Company, 2009. [4] R. T Morrison, and R. N. Boyd.Organic Chemistry. 7thed. New Delhi: Prentice-Hall of India (P) Ltd., 2010. [5] Katritzky, A. R. Handbook of Heterocyclic Chemistry, 3rd addition, 2010. [6] Agrawal, O. P. Chemistry of Natural products vol I & II, 41st addition, 2014. | ||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| ||||||||||||||||||||||||||||||||||||
CHE541B - CHEMISTRY VB-INORGANIC CHEMISTRY (2022 Batch) | ||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
|||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
|||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
||||||||||||||||||||||||||||||||||||
This course will introduce the students to concepts and applications of bioinorganic chemistry, nanomaterials, organometallic chemistry, industrial catalysis, inorganic polymers, metal clusters, sustainability, and climate change. |
||||||||||||||||||||||||||||||||||||
Learning Outcome |
||||||||||||||||||||||||||||||||||||
CO1: Explain concepts of bioinorganic chemistry CO2: Predict the bonding and structure of organometallic compounds. CO3: Perceive the concept of nuclear chemistry and acid-bases. CO4: Illustrate the concepts of sustainability, climate change and research methodology. |
Unit-1 |
Teaching Hours:10 |
|||||||||||||||||||||||||||||||||||
1. Bioinorganic Chemistry
|
||||||||||||||||||||||||||||||||||||
Metal ions in biological systems, Ion transport, Mechanism of action of sodium potassium pump. Oxygen transport systems- Metalloporphyrins - Haemoglobin and myoglobin, pH of blood,. Metal storage and transport –ferritin and transferrin, Electron transfer proteins-cytochromes, Chlorophyll and photosynthesis (mechanism not expected), Metalloproteins as enzymes – Carbonic anhydrase, Carboxy peptidase, cytochrome P 450, alcohol dehydrogenase,. Toxicity of metal ions-Pb, Hg and As. Anticancer drugs: Cis-platin, oxaliplatin and carboplatin – Structure and significance. | ||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:10 |
|||||||||||||||||||||||||||||||||||
1. Bioinorganic Chemistry
|
||||||||||||||||||||||||||||||||||||
Metal ions in biological systems, Ion transport, Mechanism of action of sodium potassium pump. Oxygen transport systems- Metalloporphyrins - Haemoglobin and myoglobin, pH of blood,. Metal storage and transport –ferritin and transferrin, Electron transfer proteins-cytochromes, Chlorophyll and photosynthesis (mechanism not expected), Metalloproteins as enzymes – Carbonic anhydrase, Carboxy peptidase, cytochrome P 450, alcohol dehydrogenase,. Toxicity of metal ions-Pb, Hg and As. Anticancer drugs: Cis-platin, oxaliplatin and carboplatin – Structure and significance. | ||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:10 |
|||||||||||||||||||||||||||||||||||
1. Bioinorganic Chemistry
|
||||||||||||||||||||||||||||||||||||
Metal ions in biological systems, Ion transport, Mechanism of action of sodium potassium pump. Oxygen transport systems- Metalloporphyrins - Haemoglobin and myoglobin, pH of blood,. Metal storage and transport –ferritin and transferrin, Electron transfer proteins-cytochromes, Chlorophyll and photosynthesis (mechanism not expected), Metalloproteins as enzymes – Carbonic anhydrase, Carboxy peptidase, cytochrome P 450, alcohol dehydrogenase,. Toxicity of metal ions-Pb, Hg and As. Anticancer drugs: Cis-platin, oxaliplatin and carboplatin – Structure and significance. | ||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:10 |
|||||||||||||||||||||||||||||||||||
1. Bioinorganic Chemistry
|
||||||||||||||||||||||||||||||||||||
Metal ions in biological systems, Ion transport, Mechanism of action of sodium potassium pump. Oxygen transport systems- Metalloporphyrins - Haemoglobin and myoglobin, pH of blood,. Metal storage and transport –ferritin and transferrin, Electron transfer proteins-cytochromes, Chlorophyll and photosynthesis (mechanism not expected), Metalloproteins as enzymes – Carbonic anhydrase, Carboxy peptidase, cytochrome P 450, alcohol dehydrogenase,. Toxicity of metal ions-Pb, Hg and As. Anticancer drugs: Cis-platin, oxaliplatin and carboplatin – Structure and significance. | ||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||
2. Organometallic Compounds
|
||||||||||||||||||||||||||||||||||||
Ligands, classification, hapticity. Eighteen electron rule for organometallic com complexes, Synthesis and structure and bonding (VBT only) a) K [ Pt Cl3(-C2H4 ) ] , [Fe (-C6H5)2] , [Cr(-C6H5 )2], [W (CH3)6 ]. b) Metal carbonyls :- Ni (CO)4 , Fe (CO)5 , Cr (CO)6 , Co2(CO)8 , Mn2 (CO)10 .Ferrocene Catalysis by organometallic compounds-Unique properties of Organo Aluminium compounds. Zeigler Natta catalyst in the polymerization of alkene, Wilkinson catalyst in the hydrogenation of alkene, Wacker process, Monsanto acetic acid process. (mechanism not expected).
| ||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||
2. Organometallic Compounds
|
||||||||||||||||||||||||||||||||||||
Ligands, classification, hapticity. Eighteen electron rule for organometallic com complexes, Synthesis and structure and bonding (VBT only) a) K [ Pt Cl3(-C2H4 ) ] , [Fe (-C6H5)2] , [Cr(-C6H5 )2], [W (CH3)6 ]. b) Metal carbonyls :- Ni (CO)4 , Fe (CO)5 , Cr (CO)6 , Co2(CO)8 , Mn2 (CO)10 .Ferrocene Catalysis by organometallic compounds-Unique properties of Organo Aluminium compounds. Zeigler Natta catalyst in the polymerization of alkene, Wilkinson catalyst in the hydrogenation of alkene, Wacker process, Monsanto acetic acid process. (mechanism not expected).
| ||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||
2. Organometallic Compounds
|
||||||||||||||||||||||||||||||||||||
Ligands, classification, hapticity. Eighteen electron rule for organometallic com complexes, Synthesis and structure and bonding (VBT only) a) K [ Pt Cl3(-C2H4 ) ] , [Fe (-C6H5)2] , [Cr(-C6H5 )2], [W (CH3)6 ]. b) Metal carbonyls :- Ni (CO)4 , Fe (CO)5 , Cr (CO)6 , Co2(CO)8 , Mn2 (CO)10 .Ferrocene Catalysis by organometallic compounds-Unique properties of Organo Aluminium compounds. Zeigler Natta catalyst in the polymerization of alkene, Wilkinson catalyst in the hydrogenation of alkene, Wacker process, Monsanto acetic acid process. (mechanism not expected).
| ||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||
2. Organometallic Compounds
|
||||||||||||||||||||||||||||||||||||
Ligands, classification, hapticity. Eighteen electron rule for organometallic com complexes, Synthesis and structure and bonding (VBT only) a) K [ Pt Cl3(-C2H4 ) ] , [Fe (-C6H5)2] , [Cr(-C6H5 )2], [W (CH3)6 ]. b) Metal carbonyls :- Ni (CO)4 , Fe (CO)5 , Cr (CO)6 , Co2(CO)8 , Mn2 (CO)10 .Ferrocene Catalysis by organometallic compounds-Unique properties of Organo Aluminium compounds. Zeigler Natta catalyst in the polymerization of alkene, Wilkinson catalyst in the hydrogenation of alkene, Wacker process, Monsanto acetic acid process. (mechanism not expected).
| ||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
3. Acids and Bases
|
||||||||||||||||||||||||||||||||||||
Prelearning: Concept of acidity and basicity. Arrheinus concept, Lewis concept Lowry – Bronsted concept of acids and bases. relative strengths of acid base pairs, Lux Flood concept, Solvent system concept, Limitations, relative strength of acids and bases. explanation of levelling effect on the basis of solvent system concept. Hard and soft acids and bases- Pearson concept, application of HSAB principles – Stability of compounds / complexes, predicting the feasibility of a reaction. | ||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
3. Acids and Bases
|
||||||||||||||||||||||||||||||||||||
Prelearning: Concept of acidity and basicity. Arrheinus concept, Lewis concept Lowry – Bronsted concept of acids and bases. relative strengths of acid base pairs, Lux Flood concept, Solvent system concept, Limitations, relative strength of acids and bases. explanation of levelling effect on the basis of solvent system concept. Hard and soft acids and bases- Pearson concept, application of HSAB principles – Stability of compounds / complexes, predicting the feasibility of a reaction. | ||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
3. Acids and Bases
|
||||||||||||||||||||||||||||||||||||
Prelearning: Concept of acidity and basicity. Arrheinus concept, Lewis concept Lowry – Bronsted concept of acids and bases. relative strengths of acid base pairs, Lux Flood concept, Solvent system concept, Limitations, relative strength of acids and bases. explanation of levelling effect on the basis of solvent system concept. Hard and soft acids and bases- Pearson concept, application of HSAB principles – Stability of compounds / complexes, predicting the feasibility of a reaction. | ||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
3. Acids and Bases
|
||||||||||||||||||||||||||||||||||||
Prelearning: Concept of acidity and basicity. Arrheinus concept, Lewis concept Lowry – Bronsted concept of acids and bases. relative strengths of acid base pairs, Lux Flood concept, Solvent system concept, Limitations, relative strength of acids and bases. explanation of levelling effect on the basis of solvent system concept. Hard and soft acids and bases- Pearson concept, application of HSAB principles – Stability of compounds / complexes, predicting the feasibility of a reaction. | ||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
Nuclear Chemistry
|
||||||||||||||||||||||||||||||||||||
Pre learning: N/P ratio, curves, stability belts. Nuclear binding energy. Mass defect, simple calculations involving mass defect and B.E per nucleon, half-life. Nuclear fission-Liquid drop model, Modes of release of fission energy nuclear reactors - Thermal and fast breeder breeder reactors, Disposal of radioactive waste from nuclear reactors, Nuclear fusion- thermonuclear reaction-energy source of the sun and stars. Radioactive tracers- use of radio isotopes in tracer technique, agriculture, medicine, food preservation and Carbon dating
Artificial radioactivity, Induced radioactivity, Q value of nuclear reactions -Numerical problems. Atomic energy programme in India. **Case studies on Chernobyl and Fukushima nuclear disaster. | ||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
Nuclear Chemistry
|
||||||||||||||||||||||||||||||||||||
Pre learning: N/P ratio, curves, stability belts. Nuclear binding energy. Mass defect, simple calculations involving mass defect and B.E per nucleon, half-life. Nuclear fission-Liquid drop model, Modes of release of fission energy nuclear reactors - Thermal and fast breeder breeder reactors, Disposal of radioactive waste from nuclear reactors, Nuclear fusion- thermonuclear reaction-energy source of the sun and stars. Radioactive tracers- use of radio isotopes in tracer technique, agriculture, medicine, food preservation and Carbon dating
Artificial radioactivity, Induced radioactivity, Q value of nuclear reactions -Numerical problems. Atomic energy programme in India. **Case studies on Chernobyl and Fukushima nuclear disaster. | ||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
Nuclear Chemistry
|
||||||||||||||||||||||||||||||||||||
Pre learning: N/P ratio, curves, stability belts. Nuclear binding energy. Mass defect, simple calculations involving mass defect and B.E per nucleon, half-life. Nuclear fission-Liquid drop model, Modes of release of fission energy nuclear reactors - Thermal and fast breeder breeder reactors, Disposal of radioactive waste from nuclear reactors, Nuclear fusion- thermonuclear reaction-energy source of the sun and stars. Radioactive tracers- use of radio isotopes in tracer technique, agriculture, medicine, food preservation and Carbon dating
Artificial radioactivity, Induced radioactivity, Q value of nuclear reactions -Numerical problems. Atomic energy programme in India. **Case studies on Chernobyl and Fukushima nuclear disaster. | ||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
Nuclear Chemistry
|
||||||||||||||||||||||||||||||||||||
Pre learning: N/P ratio, curves, stability belts. Nuclear binding energy. Mass defect, simple calculations involving mass defect and B.E per nucleon, half-life. Nuclear fission-Liquid drop model, Modes of release of fission energy nuclear reactors - Thermal and fast breeder breeder reactors, Disposal of radioactive waste from nuclear reactors, Nuclear fusion- thermonuclear reaction-energy source of the sun and stars. Radioactive tracers- use of radio isotopes in tracer technique, agriculture, medicine, food preservation and Carbon dating
Artificial radioactivity, Induced radioactivity, Q value of nuclear reactions -Numerical problems. Atomic energy programme in India. **Case studies on Chernobyl and Fukushima nuclear disaster. | ||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
Sustainability and climate change
|
||||||||||||||||||||||||||||||||||||
Introduction, definition of sustainability in different context, environmental sustainability renewable sources of energy Hazard Mitigation: Identification of hazard prone belts, hazard zonation and risk assessment; risk reduction in vulnerable areas, developing warning systems, forecasting, emergency preparedness, education and training activities, planning for rescue and relief work. Disaster management: - Industrial disasters: definition of disaster management; components of disaster management cycle- crisis management & risk management. Crisis management-quick response & relief, recovery, development. Risk management- risk identification & risk reduction-preparedness, prevention and mitigation. Climate Change Anthropogenic–based climate change, Global Warming, Carbon Dioxide, Polar Ice Caps, ozone layer depletion, impact on biodiversity, Biofuels, Solar Power, case studies on climate change. | ||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
Sustainability and climate change
|
||||||||||||||||||||||||||||||||||||
Introduction, definition of sustainability in different context, environmental sustainability renewable sources of energy Hazard Mitigation: Identification of hazard prone belts, hazard zonation and risk assessment; risk reduction in vulnerable areas, developing warning systems, forecasting, emergency preparedness, education and training activities, planning for rescue and relief work. Disaster management: - Industrial disasters: definition of disaster management; components of disaster management cycle- crisis management & risk management. Crisis management-quick response & relief, recovery, development. Risk management- risk identification & risk reduction-preparedness, prevention and mitigation. Climate Change Anthropogenic–based climate change, Global Warming, Carbon Dioxide, Polar Ice Caps, ozone layer depletion, impact on biodiversity, Biofuels, Solar Power, case studies on climate change. | ||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
Sustainability and climate change
|
||||||||||||||||||||||||||||||||||||
Introduction, definition of sustainability in different context, environmental sustainability renewable sources of energy Hazard Mitigation: Identification of hazard prone belts, hazard zonation and risk assessment; risk reduction in vulnerable areas, developing warning systems, forecasting, emergency preparedness, education and training activities, planning for rescue and relief work. Disaster management: - Industrial disasters: definition of disaster management; components of disaster management cycle- crisis management & risk management. Crisis management-quick response & relief, recovery, development. Risk management- risk identification & risk reduction-preparedness, prevention and mitigation. Climate Change Anthropogenic–based climate change, Global Warming, Carbon Dioxide, Polar Ice Caps, ozone layer depletion, impact on biodiversity, Biofuels, Solar Power, case studies on climate change. | ||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
Sustainability and climate change
|
||||||||||||||||||||||||||||||||||||
Introduction, definition of sustainability in different context, environmental sustainability renewable sources of energy Hazard Mitigation: Identification of hazard prone belts, hazard zonation and risk assessment; risk reduction in vulnerable areas, developing warning systems, forecasting, emergency preparedness, education and training activities, planning for rescue and relief work. Disaster management: - Industrial disasters: definition of disaster management; components of disaster management cycle- crisis management & risk management. Crisis management-quick response & relief, recovery, development. Risk management- risk identification & risk reduction-preparedness, prevention and mitigation. Climate Change Anthropogenic–based climate change, Global Warming, Carbon Dioxide, Polar Ice Caps, ozone layer depletion, impact on biodiversity, Biofuels, Solar Power, case studies on climate change. | ||||||||||||||||||||||||||||||||||||
Unit-6 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Research Methodology
|
||||||||||||||||||||||||||||||||||||
Introduction – meaning of research. Types of research, research methods vs methodology. Scientific method of conducting research. Review of literature. Selecting and defining a problem. Science journals. Impact factor, citation and citation index. Indexing agencies (Scopus, Web of Science), Research proposals | ||||||||||||||||||||||||||||||||||||
Unit-6 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Research Methodology
|
||||||||||||||||||||||||||||||||||||
Introduction – meaning of research. Types of research, research methods vs methodology. Scientific method of conducting research. Review of literature. Selecting and defining a problem. Science journals. Impact factor, citation and citation index. Indexing agencies (Scopus, Web of Science), Research proposals | ||||||||||||||||||||||||||||||||||||
Unit-6 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Research Methodology
|
||||||||||||||||||||||||||||||||||||
Introduction – meaning of research. Types of research, research methods vs methodology. Scientific method of conducting research. Review of literature. Selecting and defining a problem. Science journals. Impact factor, citation and citation index. Indexing agencies (Scopus, Web of Science), Research proposals | ||||||||||||||||||||||||||||||||||||
Unit-6 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Research Methodology
|
||||||||||||||||||||||||||||||||||||
Introduction – meaning of research. Types of research, research methods vs methodology. Scientific method of conducting research. Review of literature. Selecting and defining a problem. Science journals. Impact factor, citation and citation index. Indexing agencies (Scopus, Web of Science), Research proposals | ||||||||||||||||||||||||||||||||||||
Text Books And Reference Books:
| ||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading
| ||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| ||||||||||||||||||||||||||||||||||||
CHE551 - CHEMISTRY PRACTICALS V-PHYSICAL CHEMISTRY (2022 Batch) | ||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
|||||||||||||||||||||||||||||||||||
Max Marks:50 |
Credits:2 |
|||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
||||||||||||||||||||||||||||||||||||
This course introduces the students to various experiments on electrochemistry, chemical kinetics and thermometry. It also emphasizes the importance of organized and systematic approach in carrying out experiments. |
||||||||||||||||||||||||||||||||||||
Learning Outcome |
||||||||||||||||||||||||||||||||||||
CO1: Estimate the important parameters pertaining to electrochemistry, ionic equilibria and spectroscopy. CO2: Evaluate the conductance and potential difference exhibited by the compounds using conductometric and potentiometric methods applying them for various quantitative analysis.
|
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||||
Physical chemistry Practical
|
|||||||||||||||||||||||||||||||
1. Determination of the equivalent conductivity of 0.1 N NaCl 2. Determination of the dissociation constant of monochloracetic acid by conductivity method 3. Determination of the distribution coefficient of benzoic acid between water and toluene. 4. Determination of the solubility of a sparingly soluble salt (AgCl) by conductivity method. 5. Determination of the percentage of NaCl by miscibility temperature method. 6. Determination of Cu in aluminum and zinc based alloys using flame photometer. 7. Determination of potassium using flame photometer. 8. Determination of transition temperature of a salt hydrate by thermometric method 9. Determination of equivalent conductance, degree of dissociation and dissociation constant of a weak acid. 11. Conductometric titration: i)Strong acid vs. strong base ii)Mixture of strong acid and weak acid vs. strong base. ii)Weak acid vs. strong base 12. Potentiometry a) Strong acid vs. strong base b) Weak acid vs. strong base c) Potassium dichromate vs. Mohr's salt 13. Ionic equilibria and pH measurements a) Preparation of buffer solutions, determination of pH and comparison of the values with theoretical values. (i) Sodium acetate-acetic acid (ii) Ammonium chloride-ammonium hydroxide b) Measurement of pH of different solutions like aerated drinks, fruit juices, shampoos and soaps (use dilute solutions of soaps and shampoos to prevent damage to the glass electrode) using pH-meter. 14. Adsorption study a. Verification of Lanmuir adsorption isotherm b. Verification of Frendlich adsorption isotherm
| |||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||||
Physical chemistry Practical
|
|||||||||||||||||||||||||||||||
1. Determination of the equivalent conductivity of 0.1 N NaCl 2. Determination of the dissociation constant of monochloracetic acid by conductivity method 3. Determination of the distribution coefficient of benzoic acid between water and toluene. 4. Determination of the solubility of a sparingly soluble salt (AgCl) by conductivity method. 5. Determination of the percentage of NaCl by miscibility temperature method. 6. Determination of Cu in aluminum and zinc based alloys using flame photometer. 7. Determination of potassium using flame photometer. 8. Determination of transition temperature of a salt hydrate by thermometric method 9. Determination of equivalent conductance, degree of dissociation and dissociation constant of a weak acid. 11. Conductometric titration: i)Strong acid vs. strong base ii)Mixture of strong acid and weak acid vs. strong base. ii)Weak acid vs. strong base 12. Potentiometry a) Strong acid vs. strong base b) Weak acid vs. strong base c) Potassium dichromate vs. Mohr's salt 13. Ionic equilibria and pH measurements a) Preparation of buffer solutions, determination of pH and comparison of the values with theoretical values. (i) Sodium acetate-acetic acid (ii) Ammonium chloride-ammonium hydroxide b) Measurement of pH of different solutions like aerated drinks, fruit juices, shampoos and soaps (use dilute solutions of soaps and shampoos to prevent damage to the glass electrode) using pH-meter. 14. Adsorption study a. Verification of Lanmuir adsorption isotherm b. Verification of Frendlich adsorption isotherm
| |||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||||
Physical chemistry Practical
|
|||||||||||||||||||||||||||||||
1. Determination of the equivalent conductivity of 0.1 N NaCl 2. Determination of the dissociation constant of monochloracetic acid by conductivity method 3. Determination of the distribution coefficient of benzoic acid between water and toluene. 4. Determination of the solubility of a sparingly soluble salt (AgCl) by conductivity method. 5. Determination of the percentage of NaCl by miscibility temperature method. 6. Determination of Cu in aluminum and zinc based alloys using flame photometer. 7. Determination of potassium using flame photometer. 8. Determination of transition temperature of a salt hydrate by thermometric method 9. Determination of equivalent conductance, degree of dissociation and dissociation constant of a weak acid. 11. Conductometric titration: i)Strong acid vs. strong base ii)Mixture of strong acid and weak acid vs. strong base. ii)Weak acid vs. strong base 12. Potentiometry a) Strong acid vs. strong base b) Weak acid vs. strong base c) Potassium dichromate vs. Mohr's salt 13. Ionic equilibria and pH measurements a) Preparation of buffer solutions, determination of pH and comparison of the values with theoretical values. (i) Sodium acetate-acetic acid (ii) Ammonium chloride-ammonium hydroxide b) Measurement of pH of different solutions like aerated drinks, fruit juices, shampoos and soaps (use dilute solutions of soaps and shampoos to prevent damage to the glass electrode) using pH-meter. 14. Adsorption study a. Verification of Lanmuir adsorption isotherm b. Verification of Frendlich adsorption isotherm
| |||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||||
Physical chemistry Practical
|
|||||||||||||||||||||||||||||||
1. Determination of the equivalent conductivity of 0.1 N NaCl 2. Determination of the dissociation constant of monochloracetic acid by conductivity method 3. Determination of the distribution coefficient of benzoic acid between water and toluene. 4. Determination of the solubility of a sparingly soluble salt (AgCl) by conductivity method. 5. Determination of the percentage of NaCl by miscibility temperature method. 6. Determination of Cu in aluminum and zinc based alloys using flame photometer. 7. Determination of potassium using flame photometer. 8. Determination of transition temperature of a salt hydrate by thermometric method 9. Determination of equivalent conductance, degree of dissociation and dissociation constant of a weak acid. 11. Conductometric titration: i)Strong acid vs. strong base ii)Mixture of strong acid and weak acid vs. strong base. ii)Weak acid vs. strong base 12. Potentiometry a) Strong acid vs. strong base b) Weak acid vs. strong base c) Potassium dichromate vs. Mohr's salt 13. Ionic equilibria and pH measurements a) Preparation of buffer solutions, determination of pH and comparison of the values with theoretical values. (i) Sodium acetate-acetic acid (ii) Ammonium chloride-ammonium hydroxide b) Measurement of pH of different solutions like aerated drinks, fruit juices, shampoos and soaps (use dilute solutions of soaps and shampoos to prevent damage to the glass electrode) using pH-meter. 14. Adsorption study a. Verification of Lanmuir adsorption isotherm b. Verification of Frendlich adsorption isotherm
| |||||||||||||||||||||||||||||||
Text Books And Reference Books: [1] Shoemaker and Garland Experiments in physical chemistry McGraw Hill International 8thedn., 2008. [2] J.B. Yadav, Advanced practical chemistry by Krishna prakashan media (p) ltd,,29th ed. Meerut, 2010. | |||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading [3]F Daniels and F.A Alberty. Physical Chemistry. 4th ed. Wiley, 1996. [4] P.W Atkins, Physical chemistry,8th ed., Oxford University Press, 2006 [5] G.M. Barrow Physical chemistry, 5th ed.,tata, Mc Graw Hill,2006 [6] Glasstone Samuel, Textbook of Physical Chemistry. 2nd ed. Mcmillan, 2007. [7] B.R. Puri, L.R. Sharma, M.S. Pathania, Principles of Physical ChemistryVishal Publications, 2012 | |||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||
CHE551A - CHEMISTRY PRACTICALS VA-ORGANIC CHEMISTRY (2022 Batch) | |||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:2 |
||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||
This course introduces the students to the preparation and purification techniques of organic compounds. Systematic analysis of organic compounds is also included. It also emphasizes the importance of organized and systematic approach in carrying out experiments. |
|||||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||||
CO1: Design organic reactions for various synthetic transformations CO2: Analyse organic compounds quantitatively and interpret spectroscopic characterisation of organic compounds |
Unit-1 |
Teaching Hours:20 |
Organic Chemistry
|
|
I. Preparations: Mechanism of various reactions involved to be discussed. Recrystallisation, determination of melting point and calculation of quantitative yields to be done. (a) Bromination of Phenol/Aniline (b) Benzoylation of amines/phenols (c) Oxime and 2,4-dinitrophenylhydrazone of aldehyde/ketone II Purification of organic compounds by crystallization (from water and alcohol) and Criteria of Purity: Determination of melting and boiling points. Detection of N, S and halogens in organic compounds. Systematic Qualitative Organic Analysis of Organic Compounds possessing monofunctional groups (-COOH, phenolic, aldehydic, ketonic, amide, nitro, amines) and preparation of one derivative. | |
Unit-1 |
Teaching Hours:20 |
Organic Chemistry
|
|
I. Preparations: Mechanism of various reactions involved to be discussed. Recrystallisation, determination of melting point and calculation of quantitative yields to be done. (a) Bromination of Phenol/Aniline (b) Benzoylation of amines/phenols (c) Oxime and 2,4-dinitrophenylhydrazone of aldehyde/ketone II Purification of organic compounds by crystallization (from water and alcohol) and Criteria of Purity: Determination of melting and boiling points. Detection of N, S and halogens in organic compounds. Systematic Qualitative Organic Analysis of Organic Compounds possessing monofunctional groups (-COOH, phenolic, aldehydic, ketonic, amide, nitro, amines) and preparation of one derivative. | |
Unit-1 |
Teaching Hours:20 |
Organic Chemistry
|
|
I. Preparations: Mechanism of various reactions involved to be discussed. Recrystallisation, determination of melting point and calculation of quantitative yields to be done. (a) Bromination of Phenol/Aniline (b) Benzoylation of amines/phenols (c) Oxime and 2,4-dinitrophenylhydrazone of aldehyde/ketone II Purification of organic compounds by crystallization (from water and alcohol) and Criteria of Purity: Determination of melting and boiling points. Detection of N, S and halogens in organic compounds. Systematic Qualitative Organic Analysis of Organic Compounds possessing monofunctional groups (-COOH, phenolic, aldehydic, ketonic, amide, nitro, amines) and preparation of one derivative. | |
Unit-1 |
Teaching Hours:20 |
Organic Chemistry
|
|
I. Preparations: Mechanism of various reactions involved to be discussed. Recrystallisation, determination of melting point and calculation of quantitative yields to be done. (a) Bromination of Phenol/Aniline (b) Benzoylation of amines/phenols (c) Oxime and 2,4-dinitrophenylhydrazone of aldehyde/ketone II Purification of organic compounds by crystallization (from water and alcohol) and Criteria of Purity: Determination of melting and boiling points. Detection of N, S and halogens in organic compounds. Systematic Qualitative Organic Analysis of Organic Compounds possessing monofunctional groups (-COOH, phenolic, aldehydic, ketonic, amide, nitro, amines) and preparation of one derivative. | |
Unit-2 |
Teaching Hours:10 |
Synthesis and Spectroscopic Analysis
|
|
. Synthesis of benzoic acid from toluene and its spectral analysis. 2. Synthesis of acetanilide from aniline and its spectral analysis. 3. Synthesis of tribromophenol from phenol and its spectral analysis. 4. Synthesis of aspirin from salicylic acid and its spectral analysis. | |
Unit-2 |
Teaching Hours:10 |
Synthesis and Spectroscopic Analysis
|
|
. Synthesis of benzoic acid from toluene and its spectral analysis. 2. Synthesis of acetanilide from aniline and its spectral analysis. 3. Synthesis of tribromophenol from phenol and its spectral analysis. 4. Synthesis of aspirin from salicylic acid and its spectral analysis. | |
Unit-2 |
Teaching Hours:10 |
Synthesis and Spectroscopic Analysis
|
|
. Synthesis of benzoic acid from toluene and its spectral analysis. 2. Synthesis of acetanilide from aniline and its spectral analysis. 3. Synthesis of tribromophenol from phenol and its spectral analysis. 4. Synthesis of aspirin from salicylic acid and its spectral analysis. | |
Unit-2 |
Teaching Hours:10 |
Synthesis and Spectroscopic Analysis
|
|
. Synthesis of benzoic acid from toluene and its spectral analysis. 2. Synthesis of acetanilide from aniline and its spectral analysis. 3. Synthesis of tribromophenol from phenol and its spectral analysis. 4. Synthesis of aspirin from salicylic acid and its spectral analysis. | |
Text Books And Reference Books: [1] Vogel, A.I., Tatchell, A.R., Furnis, B.S., Hannaford, A.J. & Smith, P.W.G., Textbook of Practical Organic Chemistry, Prentice-Hall, 5th edition, 1996.
| |
Essential Reading / Recommended Reading [2] Ahluwalia, V.K. & Aggarwal, R. Comprehensive Practical Organic Chemistry, Universities Press, 2012. | |
Evaluation Pattern Total Marks for each Semester – 100
1. Continuous internal assessment of Practicals ………… 20 Marks 2. Mid-term practical Test ………………………………… 20 Marks 3. Record assessment ……………………………………… 10 Marks 4. End-semester Practical examination ………………….. 50 Marks (Viva voce – 10 marks Performing experiment – 40 marks) TOTAL 100 Marks | |
CHE551B - CHEMISTRY PRACTICALS VB-INORGANIC CHEMISTRY (2022 Batch) | |
Total Teaching Hours for Semester:60 |
No of Lecture Hours/Week:2 |
Max Marks:50 |
Credits:2 |
Course Objectives/Course Description |
|
This practical course consists of experiments that are designed to reinforce the learning of the theory course Novel Inorganic Solids. Experiments are either based on Preparation of materials or estimation of samples. |
|
Learning Outcome |
|
CO1: Explain concepts of bioinorganic chemistry
CO2: Predict the bonding and structure of organometallic compounds.
CO3: Perceive the concept of nuclear chemistry and acid-bases.
CO4: Illustrate the concepts of sustainability, climate change and research methodology.
|
Unit-1 |
Teaching Hours:30 |
Inorganic chemistry
|
|
1.Gravimetric estimation of amount of nickel present in a given solution as bis(dimethylglyoximato) nickel(II) 2. Gravimetric estimation of sulphate as BaSO 4 3. Gravimetric estimation of Ferric ions as ferric oxide 4. Gravimetric estimation of aluminium as oxinate in a given solution 5. Gravimetric estimation of magnesium as magnesium oxinate 6. Colorimetric estimation of ferrous ion using ortho-phenanthroline 7. Colorimetric estimation of copper as cuprammonium sulphate 8. Preparation of borax/ boric acid. 9. Determination of free acidity in ammonium sulphate fertilizer. 10. Estimation of calcium in calcium ammonium nitrate fertilizer. | |
Unit-1 |
Teaching Hours:30 |
Inorganic chemistry
|
|
1.Gravimetric estimation of amount of nickel present in a given solution as bis(dimethylglyoximato) nickel(II) 2. Gravimetric estimation of sulphate as BaSO 4 3. Gravimetric estimation of Ferric ions as ferric oxide 4. Gravimetric estimation of aluminium as oxinate in a given solution 5. Gravimetric estimation of magnesium as magnesium oxinate 6. Colorimetric estimation of ferrous ion using ortho-phenanthroline 7. Colorimetric estimation of copper as cuprammonium sulphate 8. Preparation of borax/ boric acid. 9. Determination of free acidity in ammonium sulphate fertilizer. 10. Estimation of calcium in calcium ammonium nitrate fertilizer. | |
Unit-1 |
Teaching Hours:30 |
Inorganic chemistry
|
|
1.Gravimetric estimation of amount of nickel present in a given solution as bis(dimethylglyoximato) nickel(II) 2. Gravimetric estimation of sulphate as BaSO 4 3. Gravimetric estimation of Ferric ions as ferric oxide 4. Gravimetric estimation of aluminium as oxinate in a given solution 5. Gravimetric estimation of magnesium as magnesium oxinate 6. Colorimetric estimation of ferrous ion using ortho-phenanthroline 7. Colorimetric estimation of copper as cuprammonium sulphate 8. Preparation of borax/ boric acid. 9. Determination of free acidity in ammonium sulphate fertilizer. 10. Estimation of calcium in calcium ammonium nitrate fertilizer. | |
Unit-1 |
Teaching Hours:30 |
Inorganic chemistry
|
|
1.Gravimetric estimation of amount of nickel present in a given solution as bis(dimethylglyoximato) nickel(II) 2. Gravimetric estimation of sulphate as BaSO 4 3. Gravimetric estimation of Ferric ions as ferric oxide 4. Gravimetric estimation of aluminium as oxinate in a given solution 5. Gravimetric estimation of magnesium as magnesium oxinate 6. Colorimetric estimation of ferrous ion using ortho-phenanthroline 7. Colorimetric estimation of copper as cuprammonium sulphate 8. Preparation of borax/ boric acid. 9. Determination of free acidity in ammonium sulphate fertilizer. 10. Estimation of calcium in calcium ammonium nitrate fertilizer. | |
Text Books And Reference Books: [1] Svehla, G. Vogel’s Qualitative Inorganic Analysis, Pearson Education, 2012. | |
Essential Reading / Recommended Reading [1]. Fahlman, B.D. Materials Chemistry, Springer, 2004. | |
Evaluation Pattern 1. Continuous internal assessment of Practicals ………… 20 Marks 2. Mid-term practical Test ………………………………… 20 Marks 3. Record assessment ……………………………………… 10 Marks 4. End-semester Practical examination ………………….. 50 Marks (Viva voce – 10 marks Performing experiment – 40 marks) TOTAL 100 Marks | |
MAT531 - LINEAR ALGEBRA (2022 Batch) | |
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
Max Marks:100 |
Credits:3 |
Course Objectives/Course Description |
|
Course Description: This course aims at developing the ability to write the mathematical proofs. It helps the students to understand and appreciate the beauty of the abstract nature of mathematics and also to develop a solid foundation of theoretical mathematics. Course Objectives : This course will help the learner to COBJ1. understand the theory of matrices, concepts in vector spaces and Linear Transformations. COBJ2. gain problems solving skills in solving systems of equations using matrices, finding eigenvalues and eigenvectors, vector spaces and linear transformations. |
|
Learning Outcome |
|
CO1: On successful completion of the course, the students should be able to use properties of matrices to solve systems of equations and explore eigenvectors and eigenvalues. CO2: On successful completion of the course, the students should be able to understand the concepts of vector space, basis, dimension, and their properties. CO3: On successful completion of the course, the students should be able to analyse the linear transformations in terms of matrices. |
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Matrices and System of linear equations
|
|||||||||||||||||||||||||||||
Elementary row operations, rank, inverse of a matrix using row operations, Echelon forms, normal forms, system of homogeneous and non-homogeneous equations, Cayley Hamilton theorem, eigenvalues and eigenvectors, diagonalization of square matrices. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Matrices and System of linear equations
|
|||||||||||||||||||||||||||||
Elementary row operations, rank, inverse of a matrix using row operations, Echelon forms, normal forms, system of homogeneous and non-homogeneous equations, Cayley Hamilton theorem, eigenvalues and eigenvectors, diagonalization of square matrices. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Matrices and System of linear equations
|
|||||||||||||||||||||||||||||
Elementary row operations, rank, inverse of a matrix using row operations, Echelon forms, normal forms, system of homogeneous and non-homogeneous equations, Cayley Hamilton theorem, eigenvalues and eigenvectors, diagonalization of square matrices. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Matrices and System of linear equations
|
|||||||||||||||||||||||||||||
Elementary row operations, rank, inverse of a matrix using row operations, Echelon forms, normal forms, system of homogeneous and non-homogeneous equations, Cayley Hamilton theorem, eigenvalues and eigenvectors, diagonalization of square matrices. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Matrices and System of linear equations
|
|||||||||||||||||||||||||||||
Elementary row operations, rank, inverse of a matrix using row operations, Echelon forms, normal forms, system of homogeneous and non-homogeneous equations, Cayley Hamilton theorem, eigenvalues and eigenvectors, diagonalization of square matrices. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Matrices and System of linear equations
|
|||||||||||||||||||||||||||||
Elementary row operations, rank, inverse of a matrix using row operations, Echelon forms, normal forms, system of homogeneous and non-homogeneous equations, Cayley Hamilton theorem, eigenvalues and eigenvectors, diagonalization of square matrices. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Matrices and System of linear equations
|
|||||||||||||||||||||||||||||
Elementary row operations, rank, inverse of a matrix using row operations, Echelon forms, normal forms, system of homogeneous and non-homogeneous equations, Cayley Hamilton theorem, eigenvalues and eigenvectors, diagonalization of square matrices. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Vector Spaces
|
|||||||||||||||||||||||||||||
Vector space-examples and properties, subspaces-criterion for a subset to be a subspace, linear span of a set, linear combination, linear independent and dependent subsets, basis and dimensions, and standard properties. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Vector Spaces
|
|||||||||||||||||||||||||||||
Vector space-examples and properties, subspaces-criterion for a subset to be a subspace, linear span of a set, linear combination, linear independent and dependent subsets, basis and dimensions, and standard properties. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Vector Spaces
|
|||||||||||||||||||||||||||||
Vector space-examples and properties, subspaces-criterion for a subset to be a subspace, linear span of a set, linear combination, linear independent and dependent subsets, basis and dimensions, and standard properties. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Vector Spaces
|
|||||||||||||||||||||||||||||
Vector space-examples and properties, subspaces-criterion for a subset to be a subspace, linear span of a set, linear combination, linear independent and dependent subsets, basis and dimensions, and standard properties. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Vector Spaces
|
|||||||||||||||||||||||||||||
Vector space-examples and properties, subspaces-criterion for a subset to be a subspace, linear span of a set, linear combination, linear independent and dependent subsets, basis and dimensions, and standard properties. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Vector Spaces
|
|||||||||||||||||||||||||||||
Vector space-examples and properties, subspaces-criterion for a subset to be a subspace, linear span of a set, linear combination, linear independent and dependent subsets, basis and dimensions, and standard properties. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Vector Spaces
|
|||||||||||||||||||||||||||||
Vector space-examples and properties, subspaces-criterion for a subset to be a subspace, linear span of a set, linear combination, linear independent and dependent subsets, basis and dimensions, and standard properties. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Linear Transformations
|
|||||||||||||||||||||||||||||
Linear transformations, properties, matrix of a linear transformation, change of basis, range and kernel, rank and nullity, rank-nullity theorem, non-singular linear transformation, eigenvalues and eigenvectors of a linear transformation. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Linear Transformations
|
|||||||||||||||||||||||||||||
Linear transformations, properties, matrix of a linear transformation, change of basis, range and kernel, rank and nullity, rank-nullity theorem, non-singular linear transformation, eigenvalues and eigenvectors of a linear transformation. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Linear Transformations
|
|||||||||||||||||||||||||||||
Linear transformations, properties, matrix of a linear transformation, change of basis, range and kernel, rank and nullity, rank-nullity theorem, non-singular linear transformation, eigenvalues and eigenvectors of a linear transformation. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Linear Transformations
|
|||||||||||||||||||||||||||||
Linear transformations, properties, matrix of a linear transformation, change of basis, range and kernel, rank and nullity, rank-nullity theorem, non-singular linear transformation, eigenvalues and eigenvectors of a linear transformation. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Linear Transformations
|
|||||||||||||||||||||||||||||
Linear transformations, properties, matrix of a linear transformation, change of basis, range and kernel, rank and nullity, rank-nullity theorem, non-singular linear transformation, eigenvalues and eigenvectors of a linear transformation. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Linear Transformations
|
|||||||||||||||||||||||||||||
Linear transformations, properties, matrix of a linear transformation, change of basis, range and kernel, rank and nullity, rank-nullity theorem, non-singular linear transformation, eigenvalues and eigenvectors of a linear transformation. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Linear Transformations
|
|||||||||||||||||||||||||||||
Linear transformations, properties, matrix of a linear transformation, change of basis, range and kernel, rank and nullity, rank-nullity theorem, non-singular linear transformation, eigenvalues and eigenvectors of a linear transformation. | |||||||||||||||||||||||||||||
Text Books And Reference Books: 1. S. Narayan and P.K. Mittal, Text book of Matrices, 10th ed., New Delhi: S Chand and Co. Ltd, 2004. 2. V. Krishnamurthy, V. P. Mainra, and J. L. Arora, An introduction to linear algebra. New Delhi, India: Affiliated East East-West Press Pvt Ltd., 2003. | |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading 1. D. C. Lay, Linear Algebra and its Applications, 3rd ed., Indian Reprint, Pearson Education Asia, 2007. 2. S. Lang, Introduction to Linear Algebra, 2nd ed., New York: Springer-Verlag, 2005. 3. S. H. Friedberg, A. Insel, and L. Spence, Linear algebra, 4th ed., Pearson, 2015. 4. Gilbert Strang, Linear Algebra and its Applications, 4th ed., Thomson Brooks/Cole, 2007. 5. K. Hoffmann and R. A. Kunze, Linear algebra, 2nd ed., PHI Learning, 2014. | |||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||
MAT541A - INTEGRAL TRANSFORMS (2022 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
Course Description: This course aims at providing a solid foundation upon the fundamental theories on Fourier and Laplace transforms. Course objectives: This course will help the learner to
COBJ1. gain familiarity in fundamental theories of the Fourier series, Fourier Integrals, Fourier and Laplace transforms. |
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO1.: On successful completion of the course, the students should be able to evaluate integrals by using Fourier series and Fourier integrals. CO2.: On successful completion of the course, the students should be able to apply Fourier sine and cosine transforms for various functions. CO3.: On successful completion of the course, the students should be able to derive Laplace transforms of different types of functions. CO4.: On successful completion of the course, the students should be able to utilize the properties of Laplace transforms in solving ordinary differential equations. |
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Fourier series and Fourier transform
|
|||||||||||||||||||||||||||||
Fourier series and Fourier transform of some common functions. The Fourier integral, complex Fourier transforms, basic properties, transform of the derivative, convolution theorem, and Parseval’s identity. The applications of Fourier transform to ordinary differential equations. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Fourier series and Fourier transform
|
|||||||||||||||||||||||||||||
Fourier series and Fourier transform of some common functions. The Fourier integral, complex Fourier transforms, basic properties, transform of the derivative, convolution theorem, and Parseval’s identity. The applications of Fourier transform to ordinary differential equations. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Fourier series and Fourier transform
|
|||||||||||||||||||||||||||||
Fourier series and Fourier transform of some common functions. The Fourier integral, complex Fourier transforms, basic properties, transform of the derivative, convolution theorem, and Parseval’s identity. The applications of Fourier transform to ordinary differential equations. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Fourier series and Fourier transform
|
|||||||||||||||||||||||||||||
Fourier series and Fourier transform of some common functions. The Fourier integral, complex Fourier transforms, basic properties, transform of the derivative, convolution theorem, and Parseval’s identity. The applications of Fourier transform to ordinary differential equations. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Fourier series and Fourier transform
|
|||||||||||||||||||||||||||||
Fourier series and Fourier transform of some common functions. The Fourier integral, complex Fourier transforms, basic properties, transform of the derivative, convolution theorem, and Parseval’s identity. The applications of Fourier transform to ordinary differential equations. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Fourier sine and cosine transforms
|
|||||||||||||||||||||||||||||
Fourier cosine and sine transforms with examples, properties of Fourier Cosine and Sine Transforms, applications of Fourier sine and cosine transforms with examples. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Fourier sine and cosine transforms
|
|||||||||||||||||||||||||||||
Fourier cosine and sine transforms with examples, properties of Fourier Cosine and Sine Transforms, applications of Fourier sine and cosine transforms with examples. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Fourier sine and cosine transforms
|
|||||||||||||||||||||||||||||
Fourier cosine and sine transforms with examples, properties of Fourier Cosine and Sine Transforms, applications of Fourier sine and cosine transforms with examples. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Fourier sine and cosine transforms
|
|||||||||||||||||||||||||||||
Fourier cosine and sine transforms with examples, properties of Fourier Cosine and Sine Transforms, applications of Fourier sine and cosine transforms with examples. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Fourier sine and cosine transforms
|
|||||||||||||||||||||||||||||
Fourier cosine and sine transforms with examples, properties of Fourier Cosine and Sine Transforms, applications of Fourier sine and cosine transforms with examples. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Laplace transform
|
|||||||||||||||||||||||||||||
Laplace Transform of standard functions, Laplace transform of periodic functions, Inverse Laplace transform, solution of ordinary differential equation with constant coefficient using Laplace transform, solution of simultaneous Ordinary differential equations. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Laplace transform
|
|||||||||||||||||||||||||||||
Laplace Transform of standard functions, Laplace transform of periodic functions, Inverse Laplace transform, solution of ordinary differential equation with constant coefficient using Laplace transform, solution of simultaneous Ordinary differential equations. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Laplace transform
|
|||||||||||||||||||||||||||||
Laplace Transform of standard functions, Laplace transform of periodic functions, Inverse Laplace transform, solution of ordinary differential equation with constant coefficient using Laplace transform, solution of simultaneous Ordinary differential equations. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Laplace transform
|
|||||||||||||||||||||||||||||
Laplace Transform of standard functions, Laplace transform of periodic functions, Inverse Laplace transform, solution of ordinary differential equation with constant coefficient using Laplace transform, solution of simultaneous Ordinary differential equations. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Laplace transform
|
|||||||||||||||||||||||||||||
Laplace Transform of standard functions, Laplace transform of periodic functions, Inverse Laplace transform, solution of ordinary differential equation with constant coefficient using Laplace transform, solution of simultaneous Ordinary differential equations. | |||||||||||||||||||||||||||||
Text Books And Reference Books: B. Davis, Integral transforms and their Applications, 2nd ed., Springer Science and Business Media, 2013. | |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading
| |||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||
MAT541B - MATHEMATICAL MODELLING (2022 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
Course Description: This course is concerned with the fundamentals of mathematical modeling. It deals with finding solution to real world problems by transforming into mathematical models using differential equations. The coverage includes mathematical modeling through first order, second order and system of ordinary differential equations. Course objectives: This course will help the learner to This course will help the learner to COBJ1. interpret the real-world problems in the form of first and second order differential equations. COBJ2. familiarize with some classical linear and nonlinear models. COBJ3. analyse the solutions of systems of differential equations by phase portrait method. |
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO1.: On successful completion of the course, the students should be able to apply differential equations in other branches of sciences, commerce, medicine and others CO2.: On successful completion of the course, the students should be able to understand the formulation of some classical mathematical models. CO3.: On successful completion of the course, the students should be able to demonstrate competence with a wide variety of mathematical tools and techniques. CO4.: On successful completion of the course, the students should be able to build mathematical models of real-world problems. |
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through First Ordinary Differential Equations
|
|||||||||||||||||||||||||||||
Population Dynamics, Carbon dating, Newtons law of cooling, Epidemics, Economics, Medicine, mixture problem, electric circuit problem, Chemical reactions, Terminal velocity, Continuously compounding of interest. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through First Ordinary Differential Equations
|
|||||||||||||||||||||||||||||
Population Dynamics, Carbon dating, Newtons law of cooling, Epidemics, Economics, Medicine, mixture problem, electric circuit problem, Chemical reactions, Terminal velocity, Continuously compounding of interest. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through First Ordinary Differential Equations
|
|||||||||||||||||||||||||||||
Population Dynamics, Carbon dating, Newtons law of cooling, Epidemics, Economics, Medicine, mixture problem, electric circuit problem, Chemical reactions, Terminal velocity, Continuously compounding of interest. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through First Ordinary Differential Equations
|
|||||||||||||||||||||||||||||
Population Dynamics, Carbon dating, Newtons law of cooling, Epidemics, Economics, Medicine, mixture problem, electric circuit problem, Chemical reactions, Terminal velocity, Continuously compounding of interest. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through First Ordinary Differential Equations
|
|||||||||||||||||||||||||||||
Population Dynamics, Carbon dating, Newtons law of cooling, Epidemics, Economics, Medicine, mixture problem, electric circuit problem, Chemical reactions, Terminal velocity, Continuously compounding of interest. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through First Ordinary Differential Equations
|
|||||||||||||||||||||||||||||
Population Dynamics, Carbon dating, Newtons law of cooling, Epidemics, Economics, Medicine, mixture problem, electric circuit problem, Chemical reactions, Terminal velocity, Continuously compounding of interest. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through First Ordinary Differential Equations
|
|||||||||||||||||||||||||||||
Population Dynamics, Carbon dating, Newtons law of cooling, Epidemics, Economics, Medicine, mixture problem, electric circuit problem, Chemical reactions, Terminal velocity, Continuously compounding of interest. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through Second Ordinary Differential Equations
|
|||||||||||||||||||||||||||||
The vibrations of a mass on a spring, free damped motion, forced motion, resonance phenomena, electric circuit problem, Nonlinear-Pendulum. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through Second Ordinary Differential Equations
|
|||||||||||||||||||||||||||||
The vibrations of a mass on a spring, free damped motion, forced motion, resonance phenomena, electric circuit problem, Nonlinear-Pendulum. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through Second Ordinary Differential Equations
|
|||||||||||||||||||||||||||||
The vibrations of a mass on a spring, free damped motion, forced motion, resonance phenomena, electric circuit problem, Nonlinear-Pendulum. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through Second Ordinary Differential Equations
|
|||||||||||||||||||||||||||||
The vibrations of a mass on a spring, free damped motion, forced motion, resonance phenomena, electric circuit problem, Nonlinear-Pendulum. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through Second Ordinary Differential Equations
|
|||||||||||||||||||||||||||||
The vibrations of a mass on a spring, free damped motion, forced motion, resonance phenomena, electric circuit problem, Nonlinear-Pendulum. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through Second Ordinary Differential Equations
|
|||||||||||||||||||||||||||||
The vibrations of a mass on a spring, free damped motion, forced motion, resonance phenomena, electric circuit problem, Nonlinear-Pendulum. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through Second Ordinary Differential Equations
|
|||||||||||||||||||||||||||||
The vibrations of a mass on a spring, free damped motion, forced motion, resonance phenomena, electric circuit problem, Nonlinear-Pendulum. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through system of linear differential equations:
|
|||||||||||||||||||||||||||||
Phase plane analysis: Phase Portrait for Linear and Non-Linear Systems, Stability Analysis of Solution, Applications, Predator prey model: Lotka-Volterra Model, Kermack-McKendrick Model, Predator-Prey Model and Harvesting Analysis, Competitive-Hunter Model, Combat models: Lanchester Model, Battle of IWO Jima, Battle of Vietnam, Battle of Trafalgar., Mixture Models, Epidemics-SIR model, Economics. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through system of linear differential equations:
|
|||||||||||||||||||||||||||||
Phase plane analysis: Phase Portrait for Linear and Non-Linear Systems, Stability Analysis of Solution, Applications, Predator prey model: Lotka-Volterra Model, Kermack-McKendrick Model, Predator-Prey Model and Harvesting Analysis, Competitive-Hunter Model, Combat models: Lanchester Model, Battle of IWO Jima, Battle of Vietnam, Battle of Trafalgar., Mixture Models, Epidemics-SIR model, Economics. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through system of linear differential equations:
|
|||||||||||||||||||||||||||||
Phase plane analysis: Phase Portrait for Linear and Non-Linear Systems, Stability Analysis of Solution, Applications, Predator prey model: Lotka-Volterra Model, Kermack-McKendrick Model, Predator-Prey Model and Harvesting Analysis, Competitive-Hunter Model, Combat models: Lanchester Model, Battle of IWO Jima, Battle of Vietnam, Battle of Trafalgar., Mixture Models, Epidemics-SIR model, Economics. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through system of linear differential equations:
|
|||||||||||||||||||||||||||||
Phase plane analysis: Phase Portrait for Linear and Non-Linear Systems, Stability Analysis of Solution, Applications, Predator prey model: Lotka-Volterra Model, Kermack-McKendrick Model, Predator-Prey Model and Harvesting Analysis, Competitive-Hunter Model, Combat models: Lanchester Model, Battle of IWO Jima, Battle of Vietnam, Battle of Trafalgar., Mixture Models, Epidemics-SIR model, Economics. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through system of linear differential equations:
|
|||||||||||||||||||||||||||||
Phase plane analysis: Phase Portrait for Linear and Non-Linear Systems, Stability Analysis of Solution, Applications, Predator prey model: Lotka-Volterra Model, Kermack-McKendrick Model, Predator-Prey Model and Harvesting Analysis, Competitive-Hunter Model, Combat models: Lanchester Model, Battle of IWO Jima, Battle of Vietnam, Battle of Trafalgar., Mixture Models, Epidemics-SIR model, Economics. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through system of linear differential equations:
|
|||||||||||||||||||||||||||||
Phase plane analysis: Phase Portrait for Linear and Non-Linear Systems, Stability Analysis of Solution, Applications, Predator prey model: Lotka-Volterra Model, Kermack-McKendrick Model, Predator-Prey Model and Harvesting Analysis, Competitive-Hunter Model, Combat models: Lanchester Model, Battle of IWO Jima, Battle of Vietnam, Battle of Trafalgar., Mixture Models, Epidemics-SIR model, Economics. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through system of linear differential equations:
|
|||||||||||||||||||||||||||||
Phase plane analysis: Phase Portrait for Linear and Non-Linear Systems, Stability Analysis of Solution, Applications, Predator prey model: Lotka-Volterra Model, Kermack-McKendrick Model, Predator-Prey Model and Harvesting Analysis, Competitive-Hunter Model, Combat models: Lanchester Model, Battle of IWO Jima, Battle of Vietnam, Battle of Trafalgar., Mixture Models, Epidemics-SIR model, Economics. | |||||||||||||||||||||||||||||
Text Books And Reference Books:
| |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading
| |||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||
MAT541C - GRAPH THEORY (2022 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
Course Description: This course is an introductory course to the basic concepts of Graph Theory. This includes a definition of graphs, types of graphs, paths, circuits, trees, shortest paths, and algorithms to find shortest paths. Course objectives: This course will help the learner to COBJ 1. gain conceptual knowledge on terminologies used in graph theory.
COBJ 2. understand the results on graphs and their properties. COBJ 3. gain proof writing and algorithm writing skills. |
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO1: On successful completion of the course, the students should be able to understand the terminology related to graphs CO2: On successful completion of the course, the students should be able to analyze the characteristics of graphs by using standard results on graphs CO3: On successful completion of the course, the students should be able to apply proof techniques and write algorithms |
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Introduction to Graphs
|
|||||||||||||||||||||||||||||
Graphs, connected graphs, classes of graphs, regular graphs, degree sequences, matrices, isomorphic graphs. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Introduction to Graphs
|
|||||||||||||||||||||||||||||
Graphs, connected graphs, classes of graphs, regular graphs, degree sequences, matrices, isomorphic graphs. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Introduction to Graphs
|
|||||||||||||||||||||||||||||
Graphs, connected graphs, classes of graphs, regular graphs, degree sequences, matrices, isomorphic graphs. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Introduction to Graphs
|
|||||||||||||||||||||||||||||
Graphs, connected graphs, classes of graphs, regular graphs, degree sequences, matrices, isomorphic graphs. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Introduction to Graphs
|
|||||||||||||||||||||||||||||
Graphs, connected graphs, classes of graphs, regular graphs, degree sequences, matrices, isomorphic graphs. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Introduction to Graphs
|
|||||||||||||||||||||||||||||
Graphs, connected graphs, classes of graphs, regular graphs, degree sequences, matrices, isomorphic graphs. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Introduction to Graphs
|
|||||||||||||||||||||||||||||
Graphs, connected graphs, classes of graphs, regular graphs, degree sequences, matrices, isomorphic graphs. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Connectivity
|
|||||||||||||||||||||||||||||
Bridges, trees, minimum spanning trees, cut-vertices, blocks, traversability, Eulerian and Hamiltonian graphs, digraphs. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Connectivity
|
|||||||||||||||||||||||||||||
Bridges, trees, minimum spanning trees, cut-vertices, blocks, traversability, Eulerian and Hamiltonian graphs, digraphs. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Connectivity
|
|||||||||||||||||||||||||||||
Bridges, trees, minimum spanning trees, cut-vertices, blocks, traversability, Eulerian and Hamiltonian graphs, digraphs. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Connectivity
|
|||||||||||||||||||||||||||||
Bridges, trees, minimum spanning trees, cut-vertices, blocks, traversability, Eulerian and Hamiltonian graphs, digraphs. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Connectivity
|
|||||||||||||||||||||||||||||
Bridges, trees, minimum spanning trees, cut-vertices, blocks, traversability, Eulerian and Hamiltonian graphs, digraphs. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Connectivity
|
|||||||||||||||||||||||||||||
Bridges, trees, minimum spanning trees, cut-vertices, blocks, traversability, Eulerian and Hamiltonian graphs, digraphs. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Connectivity
|
|||||||||||||||||||||||||||||
Bridges, trees, minimum spanning trees, cut-vertices, blocks, traversability, Eulerian and Hamiltonian graphs, digraphs. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Planarity
|
|||||||||||||||||||||||||||||
Matching, factorizations, decompositions, graceful labeling, planar graphs, Embedding graphs on surfaces. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Planarity
|
|||||||||||||||||||||||||||||
Matching, factorizations, decompositions, graceful labeling, planar graphs, Embedding graphs on surfaces. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Planarity
|
|||||||||||||||||||||||||||||
Matching, factorizations, decompositions, graceful labeling, planar graphs, Embedding graphs on surfaces. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Planarity
|
|||||||||||||||||||||||||||||
Matching, factorizations, decompositions, graceful labeling, planar graphs, Embedding graphs on surfaces. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Planarity
|
|||||||||||||||||||||||||||||
Matching, factorizations, decompositions, graceful labeling, planar graphs, Embedding graphs on surfaces. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Planarity
|
|||||||||||||||||||||||||||||
Matching, factorizations, decompositions, graceful labeling, planar graphs, Embedding graphs on surfaces. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Planarity
|
|||||||||||||||||||||||||||||
Matching, factorizations, decompositions, graceful labeling, planar graphs, Embedding graphs on surfaces. | |||||||||||||||||||||||||||||
Text Books And Reference Books:
| |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading
| |||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||
MAT541D - CALCULUS OF SEVERAL VARIABLES (2022 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
Course Description: This course aims to enlighten students with the fundamental concepts of vectors, geometry of space, partial differentiation and vector analysis such as gradient, divergence, curl, and the evaluation of line, surface and volume integrals. The three classical theorems, viz., Green’s theorem, Gauss divergence theorem and Stoke’s theorem are also covered. Course objectives: This course will help the learner to COBJ 1. gain familiarity with the fundamental concepts of vectors and geometry of space Curves. COBJ 2. illustrates and interprets differential and integral calculus of vector fields COBJ 3. demonstrate the use Green’s Theorem, Stokes Theorem, and Gauss’ divergence Theorem |
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO1: On successful completion of the course, the students should be able to solve problems involving vector operations. CO2: On successful completion of the course, the students should be able to understand the TNB framework and derive Serret-Frenet formula. CO3: On successful completion of the course, the students should be able to compute double integrals and be familiar with change of order of integration. CO4: On successful completion of the course, the students should be able to understand the concept of line integrals for vector valued functions. CO5: On successful completion of the course, the students should be able to apply Green's Theorem, Divergence Theorem and Stoke's Theorem. |
Unit-1 |
Teaching Hours:15 |
Vectors and Geometry of Space
|
|
Fundamentals: Three-dimensional coordination systems, Vectors and vector operations, Line and planes in space, Curves in space and their tangents, Integrals of vector functions, Arc length in space, Curvature and normal vectors of a space, TNB frame, Directional derivatives and gradient vectors, Divergence and curl of vector valued functions. | |
Unit-1 |
Teaching Hours:15 |
Vectors and Geometry of Space
|
|
Fundamentals: Three-dimensional coordination systems, Vectors and vector operations, Line and planes in space, Curves in space and their tangents, Integrals of vector functions, Arc length in space, Curvature and normal vectors of a space, TNB frame, Directional derivatives and gradient vectors, Divergence and curl of vector valued functions. | |
Unit-1 |
Teaching Hours:15 |
Vectors and Geometry of Space
|
|
Fundamentals: Three-dimensional coordination systems, Vectors and vector operations, Line and planes in space, Curves in space and their tangents, Integrals of vector functions, Arc length in space, Curvature and normal vectors of a space, TNB frame, Directional derivatives and gradient vectors, Divergence and curl of vector valued functions. | |
Unit-1 |
Teaching Hours:15 |
Vectors and Geometry of Space
|
|
Fundamentals: Three-dimensional coordination systems, Vectors and vector operations, Line and planes in space, Curves in space and their tangents, Integrals of vector functions, Arc length in space, Curvature and normal vectors of a space, TNB frame, Directional derivatives and gradient vectors, Divergence and curl of vector valued functions. | |
Unit-1 |
Teaching Hours:15 |
Vectors and Geometry of Space
|
|
Fundamentals: Three-dimensional coordination systems, Vectors and vector operations, Line and planes in space, Curves in space and their tangents, Integrals of vector functions, Arc length in space, Curvature and normal vectors of a space, TNB frame, Directional derivatives and gradient vectors, Divergence and curl of vector valued functions. | |
Unit-2 |
Teaching Hours:15 |
Multiple Integrals
|
|
Double Integrals- Areas, Moments, and Centres of Mass – Double Integrals in Polar Form –Triple Integrals in Rectangular Coordinates, Masses and Moments in Three Dimensions, Triple Integrals in Cylindrical and Spherical Coordinates, Substitutions in Multiple Integrals. | |
Unit-2 |
Teaching Hours:15 |
Multiple Integrals
|
|
Double Integrals- Areas, Moments, and Centres of Mass – Double Integrals in Polar Form –Triple Integrals in Rectangular Coordinates, Masses and Moments in Three Dimensions, Triple Integrals in Cylindrical and Spherical Coordinates, Substitutions in Multiple Integrals. | |
Unit-2 |
Teaching Hours:15 |
Multiple Integrals
|
|
Double Integrals- Areas, Moments, and Centres of Mass – Double Integrals in Polar Form –Triple Integrals in Rectangular Coordinates, Masses and Moments in Three Dimensions, Triple Integrals in Cylindrical and Spherical Coordinates, Substitutions in Multiple Integrals. | |
Unit-2 |
Teaching Hours:15 |
Multiple Integrals
|
|
Double Integrals- Areas, Moments, and Centres of Mass – Double Integrals in Polar Form –Triple Integrals in Rectangular Coordinates, Masses and Moments in Three Dimensions, Triple Integrals in Cylindrical and Spherical Coordinates, Substitutions in Multiple Integrals. | |
Unit-2 |
Teaching Hours:15 |
Multiple Integrals
|
|
Double Integrals- Areas, Moments, and Centres of Mass – Double Integrals in Polar Form –Triple Integrals in Rectangular Coordinates, Masses and Moments in Three Dimensions, Triple Integrals in Cylindrical and Spherical Coordinates, Substitutions in Multiple Integrals. | |
Unit-3 |
Teaching Hours:15 |
Integration in Vector Fields
|
|
Line Integrals, Vector Fields, Work, Circulation and Flux, Path Independence, Potential Functions, and Conservative Fields, Green’s Theorem in the Plane, Surface Area and Surface Integrals, Parametrized Surfaces, Stokes’ Theorem, The Divergence Theorem. | |
Unit-3 |
Teaching Hours:15 |
Integration in Vector Fields
|
|
Line Integrals, Vector Fields, Work, Circulation and Flux, Path Independence, Potential Functions, and Conservative Fields, Green’s Theorem in the Plane, Surface Area and Surface Integrals, Parametrized Surfaces, Stokes’ Theorem, The Divergence Theorem. | |
Unit-3 |
Teaching Hours:15 |
Integration in Vector Fields
|
|
Line Integrals, Vector Fields, Work, Circulation and Flux, Path Independence, Potential Functions, and Conservative Fields, Green’s Theorem in the Plane, Surface Area and Surface Integrals, Parametrized Surfaces, Stokes’ Theorem, The Divergence Theorem. | |
Unit-3 |
Teaching Hours:15 |
Integration in Vector Fields
|
|
Line Integrals, Vector Fields, Work, Circulation and Flux, Path Independence, Potential Functions, and Conservative Fields, Green’s Theorem in the Plane, Surface Area and Surface Integrals, Parametrized Surfaces, Stokes’ Theorem, The Divergence Theorem. | |
Unit-3 |
Teaching Hours:15 |
Integration in Vector Fields
|
|
Line Integrals, Vector Fields, Work, Circulation and Flux, Path Independence, Potential Functions, and Conservative Fields, Green’s Theorem in the Plane, Surface Area and Surface Integrals, Parametrized Surfaces, Stokes’ Theorem, The Divergence Theorem. | |
Text Books And Reference Books: J. R. Hass, C Heil, M D Weir, Thomas’ Calculus, 14th ed., USA: Pearson, 2018. | |
Essential Reading / Recommended Reading
| |
Evaluation Pattern
| |
MAT541E - OPERATIONS RESEARCH (2022 Batch) | |
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
Max Marks:100 |
Credits:3 |
Course Objectives/Course Description |
|
Course description: Operations research deals with the problems on optimization or decision making that are affected by certain constraints / restrictions in the environment. This course aims at teaching solution techniques of solving linear programming models, simple queuing model, two-person zero sum games and Network models. Course objectives: This course will help the learner to COBJ1. gain an insight executing the algorithms for solving linear programming problems including transportation and assignment problems. COBJ2. learn about the techniques involved in solving the two person zero sum game. COBJ3. calculate the estimates that characteristics the queues and perform desired analysis on a network. |
|
Learning Outcome |
|
CO1: On successful completion of the course, the students should be able to solve Linear Programming Problems using Simplex Algorithm, Transportation and Assignment Problems.
CO2: On successful completion of the course, the students should be able to find the estimates that characterizes different types of Queuing Models.
CO3: On successful completion of the course, the students should be able to obtain the solution for two person zero sum games using Linear Programming. CO4: On successful completion of the course, the students should be able to formulate Maximal Flow Model using Linear Programming and perform computations using PERT and CPM. |
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Introduction to Linear Programming Problems
|
|||||||||||||||||||||||||||||
Introduction to simplex algorithm –Special cases in the Simplex Method –Definition of the Dual Problem – Primal Dual relationships – Dual simplex methods. Transportation Models: Determination of the starting solution – iterative computations of the transportation algorithm. Assignment Model: The Hungarian Method. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Introduction to Linear Programming Problems
|
|||||||||||||||||||||||||||||
Introduction to simplex algorithm –Special cases in the Simplex Method –Definition of the Dual Problem – Primal Dual relationships – Dual simplex methods. Transportation Models: Determination of the starting solution – iterative computations of the transportation algorithm. Assignment Model: The Hungarian Method. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Introduction to Linear Programming Problems
|
|||||||||||||||||||||||||||||
Introduction to simplex algorithm –Special cases in the Simplex Method –Definition of the Dual Problem – Primal Dual relationships – Dual simplex methods. Transportation Models: Determination of the starting solution – iterative computations of the transportation algorithm. Assignment Model: The Hungarian Method. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Introduction to Linear Programming Problems
|
|||||||||||||||||||||||||||||
Introduction to simplex algorithm –Special cases in the Simplex Method –Definition of the Dual Problem – Primal Dual relationships – Dual simplex methods. Transportation Models: Determination of the starting solution – iterative computations of the transportation algorithm. Assignment Model: The Hungarian Method. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Introduction to Linear Programming Problems
|
|||||||||||||||||||||||||||||
Introduction to simplex algorithm –Special cases in the Simplex Method –Definition of the Dual Problem – Primal Dual relationships – Dual simplex methods. Transportation Models: Determination of the starting solution – iterative computations of the transportation algorithm. Assignment Model: The Hungarian Method. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Introduction to Linear Programming Problems
|
|||||||||||||||||||||||||||||
Introduction to simplex algorithm –Special cases in the Simplex Method –Definition of the Dual Problem – Primal Dual relationships – Dual simplex methods. Transportation Models: Determination of the starting solution – iterative computations of the transportation algorithm. Assignment Model: The Hungarian Method. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Introduction to Linear Programming Problems
|
|||||||||||||||||||||||||||||
Introduction to simplex algorithm –Special cases in the Simplex Method –Definition of the Dual Problem – Primal Dual relationships – Dual simplex methods. Transportation Models: Determination of the starting solution – iterative computations of the transportation algorithm. Assignment Model: The Hungarian Method. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Queuing Theory and Game Theory
|
|||||||||||||||||||||||||||||
Elements of a queuing Model – Pure Birth Model – Pure Death Model –Specialized Poisson Queues – Steady state Models: (M/M/1):(GD/∞/∞) – (M/M/1):(FCFS/∞/∞) - (M/M/1):(GD/N/∞) – (M/M/c):(GD/∞/∞) – (M/M/∞):(GD/∞/∞). Game Theory: Optimal solution of two person zero-sum games – Solution of Mixed strategy Games (only Linear programming solution).
| |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Queuing Theory and Game Theory
|
|||||||||||||||||||||||||||||
Elements of a queuing Model – Pure Birth Model – Pure Death Model –Specialized Poisson Queues – Steady state Models: (M/M/1):(GD/∞/∞) – (M/M/1):(FCFS/∞/∞) - (M/M/1):(GD/N/∞) – (M/M/c):(GD/∞/∞) – (M/M/∞):(GD/∞/∞). Game Theory: Optimal solution of two person zero-sum games – Solution of Mixed strategy Games (only Linear programming solution).
| |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Queuing Theory and Game Theory
|
|||||||||||||||||||||||||||||
Elements of a queuing Model – Pure Birth Model – Pure Death Model –Specialized Poisson Queues – Steady state Models: (M/M/1):(GD/∞/∞) – (M/M/1):(FCFS/∞/∞) - (M/M/1):(GD/N/∞) – (M/M/c):(GD/∞/∞) – (M/M/∞):(GD/∞/∞). Game Theory: Optimal solution of two person zero-sum games – Solution of Mixed strategy Games (only Linear programming solution).
| |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Queuing Theory and Game Theory
|
|||||||||||||||||||||||||||||
Elements of a queuing Model – Pure Birth Model – Pure Death Model –Specialized Poisson Queues – Steady state Models: (M/M/1):(GD/∞/∞) – (M/M/1):(FCFS/∞/∞) - (M/M/1):(GD/N/∞) – (M/M/c):(GD/∞/∞) – (M/M/∞):(GD/∞/∞). Game Theory: Optimal solution of two person zero-sum games – Solution of Mixed strategy Games (only Linear programming solution).
| |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Queuing Theory and Game Theory
|
|||||||||||||||||||||||||||||
Elements of a queuing Model – Pure Birth Model – Pure Death Model –Specialized Poisson Queues – Steady state Models: (M/M/1):(GD/∞/∞) – (M/M/1):(FCFS/∞/∞) - (M/M/1):(GD/N/∞) – (M/M/c):(GD/∞/∞) – (M/M/∞):(GD/∞/∞). Game Theory: Optimal solution of two person zero-sum games – Solution of Mixed strategy Games (only Linear programming solution).
| |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Queuing Theory and Game Theory
|
|||||||||||||||||||||||||||||
Elements of a queuing Model – Pure Birth Model – Pure Death Model –Specialized Poisson Queues – Steady state Models: (M/M/1):(GD/∞/∞) – (M/M/1):(FCFS/∞/∞) - (M/M/1):(GD/N/∞) – (M/M/c):(GD/∞/∞) – (M/M/∞):(GD/∞/∞). Game Theory: Optimal solution of two person zero-sum games – Solution of Mixed strategy Games (only Linear programming solution).
| |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Queuing Theory and Game Theory
|
|||||||||||||||||||||||||||||
Elements of a queuing Model – Pure Birth Model – Pure Death Model –Specialized Poisson Queues – Steady state Models: (M/M/1):(GD/∞/∞) – (M/M/1):(FCFS/∞/∞) - (M/M/1):(GD/N/∞) – (M/M/c):(GD/∞/∞) – (M/M/∞):(GD/∞/∞). Game Theory: Optimal solution of two person zero-sum games – Solution of Mixed strategy Games (only Linear programming solution).
| |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Network Models
|
|||||||||||||||||||||||||||||
Linear programming formulation of the shortest-route Problem. Maximal Flow model:- Enumeration of cuts – Maximal Flow Algorithm – Linear Programming Formulation of Maximal Flow Model. CPM and PERT:- Network Representation – Critical path computations – Construction of the Time Schedule – Linear Programming formulation of CPM – PERT calculations. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Network Models
|
|||||||||||||||||||||||||||||
Linear programming formulation of the shortest-route Problem. Maximal Flow model:- Enumeration of cuts – Maximal Flow Algorithm – Linear Programming Formulation of Maximal Flow Model. CPM and PERT:- Network Representation – Critical path computations – Construction of the Time Schedule – Linear Programming formulation of CPM – PERT calculations. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Network Models
|
|||||||||||||||||||||||||||||
Linear programming formulation of the shortest-route Problem. Maximal Flow model:- Enumeration of cuts – Maximal Flow Algorithm – Linear Programming Formulation of Maximal Flow Model. CPM and PERT:- Network Representation – Critical path computations – Construction of the Time Schedule – Linear Programming formulation of CPM – PERT calculations. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Network Models
|
|||||||||||||||||||||||||||||
Linear programming formulation of the shortest-route Problem. Maximal Flow model:- Enumeration of cuts – Maximal Flow Algorithm – Linear Programming Formulation of Maximal Flow Model. CPM and PERT:- Network Representation – Critical path computations – Construction of the Time Schedule – Linear Programming formulation of CPM – PERT calculations. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Network Models
|
|||||||||||||||||||||||||||||
Linear programming formulation of the shortest-route Problem. Maximal Flow model:- Enumeration of cuts – Maximal Flow Algorithm – Linear Programming Formulation of Maximal Flow Model. CPM and PERT:- Network Representation – Critical path computations – Construction of the Time Schedule – Linear Programming formulation of CPM – PERT calculations. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Network Models
|
|||||||||||||||||||||||||||||
Linear programming formulation of the shortest-route Problem. Maximal Flow model:- Enumeration of cuts – Maximal Flow Algorithm – Linear Programming Formulation of Maximal Flow Model. CPM and PERT:- Network Representation – Critical path computations – Construction of the Time Schedule – Linear Programming formulation of CPM – PERT calculations. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Network Models
|
|||||||||||||||||||||||||||||
Linear programming formulation of the shortest-route Problem. Maximal Flow model:- Enumeration of cuts – Maximal Flow Algorithm – Linear Programming Formulation of Maximal Flow Model. CPM and PERT:- Network Representation – Critical path computations – Construction of the Time Schedule – Linear Programming formulation of CPM – PERT calculations. | |||||||||||||||||||||||||||||
Text Books And Reference Books: A.H. Taha, Operations research, 9th ed., Pearson Education, 2014. | |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading
| |||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||
MAT551 - LINEAR ALGEBRA USING PYTHON (2022 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||||||||||||||||||
Max Marks:50 |
Credits:2 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
Course description: This course aims at providing hands on experience in using Python functions to illustrate the notions vector space, linear independence, linear dependence, linear transformation and rank. Course objectives: This course will help the learner to COBJ1. The built in functions required to deal with vectors and Linear Transformations. COBJ2. Python skills to handle vectors using the properties of vector spaces and linear transformations |
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO1: On successful completion of the course, the students should be able to use Python functions in applying the notions of matrices and system of equations.
CO2: On successful completion of the course, the students should be able to use Python functions in applying the problems on vector space.
CO3: On successful completion of the course, the students should be able to apply python functions to solve the problems on linear transformations.
|
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Text Books And Reference Books:
| |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading
| |||||||||||||||||||||||||||||
Evaluation Pattern The course is evaluated based on continuous internal assessments (CIA) and the lab e-record. The parameters for evaluation under each component and the mode of assessment are given below.
| |||||||||||||||||||||||||||||
MAT551A - INTEGRAL TRANSFORMS USING PYTHON (2022 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||||||||||||||||||
Max Marks:50 |
Credits:2 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
This course will help students to gain skills in using Python to illustrate Fourier transforms, Laplace transforms for some standard functions and implementing Laplace transforms in solving ordinary differential equations of first and second order with constant coefficient. Course Objectives: This course will help the learner to COBJ1. code python language using jupyter interface. COBJ2. use built in functions required to deal with Fourier and Laplace transforms. COBJ3. calculate Inverse Laplace transforms and the inverse Fourier transforms of standard functions using sympy.integrals |
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO1.: On successful completion of the course, the students should be able to acquire skill in Python Programming to illustrate Fourier series, Fourier and Laplace transforms. CO2.: On successful completion of the course, the students should be able to use Python program to solve ODE's by Laplace transforms. |
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Integral transforms using Python
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Integral transforms using Python
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Integral transforms using Python
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Integral transforms using Python
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Integral transforms using Python
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Text Books And Reference Books: J. Nunez-Iglesias, S. van der Walt, and H. Dashnow, Elegant SciPy: The art of scientific Python. O'Reilly Media, 2017. | |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading
| |||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||
MAT551B - MATHEMATICAL MODELLING USING PYTHON (2022 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||||||||||||||||||
Max Marks:50 |
Credits:2 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
Course description: This course provides students with an understanding of the practical and theoretical aspects of mathematical models involving ordinary differential equations (ODEs) using Python programming. Course objectives: This course will help the learner to COBJ1. various models spanning disciplines such as physics, biology, engineering, and finance. COBJ2. develop the basic understanding of differential equations and skills to implement numerical algorithms to solve mathematical problems using Python. |
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO1.: On successful completion of the course, the students should be able to acquire proficiency in using Python. CO2.: On successful completion of the course, the students should be able to demonstrate the use of Python to understand and interpret applications of differential equations CO3.: On successful completion of the course, the students should be able to apply the theoretical and practical knowledge to real life situations. |
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Propopsed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Propopsed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Propopsed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Propopsed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Propopsed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Propopsed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Propopsed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Text Books And Reference Books: H P Langtangen, A Primer on Scientific Programming with Python, 2nd ed., Springer, 2016. | |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading
| |||||||||||||||||||||||||||||
Evaluation Pattern The course is evaluated based on continuous internal assessments (CIA) and the lab e-record. The parameters for evaluation under each component and the mode of assessment are given below.
| |||||||||||||||||||||||||||||
MAT551C - GRAPH THEORY USING PYTHON (2022 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||||||||||||||||||
Max Marks:50 |
Credits:2 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
Course description: The course graph theory using Python is aimed at enabling the students to appreciate and understand core concepts of graph theory with the help of technological tools. It is designed with a learner-centric approach wherein the students will understand the concepts of graph theory using programming tools and develop computational skills. Course objectives: This course will help the learner to COBJ1. gain familiarity in Python language using jupyter interface and NetworkX package COBJ2. construct graphs and analyze their structural properties. COBJ3. implement standard algorithms for shortest paths, minimal spanning trees and graph searching.. |
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO1: On successful completion of the course, the students should be able to
construct graphs using related matrices CO2: On successful completion of the course, the students should be able to
compute the graph parameters related to degrees and distances CO3: On successful completion of the course, the students should be able to
gain mastery to deal with optimization problems related to networks CO4: On successful completion of the course, the students should be able to
apply algorithmic approach in solving graph theory problems |
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Text Books And Reference Books: Mohammed Zuhair, Kadry, Seifedine, Al-Taie, Python for Graph and Network Analysis.Springer, 2017. | |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading
| |||||||||||||||||||||||||||||
Evaluation Pattern The course is evaluated based on continuous internal assessments (CIA) and the lab e-record. The parameters for evaluation under each component and the mode of assessment are given below.
| |||||||||||||||||||||||||||||
MAT551D - CALCULUS OF SEVERAL VARIABLES USING PYTHON (2022 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||||||||||||||||||
Max Marks:50 |
Credits:2 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
Course description: The course calculus of several variables using python is aimed at enabling the students to explore and study the calculus with several variables in a detailed manner with the help of the mathematical packages available in Python. This course is designed with a learner-centric approach wherein the students will acquire mastery in understanding multivariate calculus using Python modules. Course objectives: This course will help the learner to gain a familiarity with COBJ1. skills to implement Python language in calculus of several variables COBJ2. the built-in functions available in library to deal with problems in multivariate calculus |
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO1: The objective is to familiarize students in using Python for demonstrating the plotting of lines in two and three dimensional space CO2: The objective is to familiarize students in using Python for implementing appropriate codes for finding tangent vector and gradient vector CO3: The objective is to familiarize students in using Python for evaluating the line and double integrals using sympy module CO4: The objective is to familiarize students in using Python for acquainting suitable commands for problems in applications of line and double integrals. |
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Text Books And Reference Books: H P Langtangen, A Primer on Scientific Programming with Python, 2nd ed., Springer, 2016 | |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading
| |||||||||||||||||||||||||||||
Evaluation Pattern The course is evaluated based on continuous internal assessments (CIA) and the lab e-record. The parameters for evaluation under each component and the mode of assessment are given below.
| |||||||||||||||||||||||||||||
MAT551E - OPERATIONS RESEARCH USING PYTHON (2022 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||||||||||||||||||
Max Marks:50 |
Credits:2 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
Course description: Operations research deals with the problems on optimization or decision making that are affected by certain constraints / restrictions in the environment. This course aims to enhance programming skills in Python to solve problems chosen from Operations Research.
Course objectives: This course will help the learner to COBJ1. gain a familiarity in using Python to solve linear programming problems, calculate the estimates that characteristics the queues and perform desired analysis on a network. COBJ2. use Python for solving problems on Operations Research. |
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO1: On successful completion of the course, the students should be able to use Python programming to solve linear programming problems by using simplex method and dual simplex method. CO2: On successful completion of the course, the students should be able to solve Transportation Problems and Assignment Problems using Python module. CO3: On successful completion of the course, the students should be able to demonstrate competence in using Python modules to solve M/M/1, M/M/c queues, and Computations on Networks. |
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Text Books And Reference Books: Garrido José M. Introduction to Computational Models with Python. CRC Press, 2016 | |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading
| |||||||||||||||||||||||||||||
Evaluation Pattern The course is evaluated based on continuous internal assessments (CIA) and the lab e-record. The parameters for evaluation under each component and the mode of assessment are given below.
| |||||||||||||||||||||||||||||
PHY531 - MODERN PHYSICS - I (2022 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
The course discusses the failure of classical mechanics, the origin of wave mechanics, and quantum mechanics in detail. It also discusses the structure of atoms given by various atomic models. |
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO1: Understand that classical mechanics will not be sufficient to explain the spectrum of black bodies, the photoelectric effect, etc., and the need for quantum mechanics. CO2: Learn the nature of duality associated with moving bodies. CO3: Assimilate various uncertainty principles. CO4: Understand the structure of atoms.
|
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||||||||||||||||
Introduction to quantum physics
|
|||||||||||||||||||||||||||||||||||||||||||
Black body radiation - failures of classical physics to explain blackbody radiation spectrum. Particle aspects of radiation: Planck’s hypothesis, radiation law, Photoelectric effect Einstein’s explanation, Compton scattering. Bohr atom model, postulates, stability, and line spectrum. Wave aspects of particles - de Broglie hypothesis of matter waves, Davisson-Germer experiment, consequences of de Broglie concepts of matter waves - electron microscope. Concepts of wave and group velocities, wave packet. Heisenberg uncertainty principle: Elementary proof of Heisenberg’s relation between momentum and position, energy and time, angular momentum and angular position, Consequences of the uncertainty relations: Ground state energy of a particle in one-dimensional box, why an electron cannot exist in the nucleus? | |||||||||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||||||||||||||||
Introduction to quantum physics
|
|||||||||||||||||||||||||||||||||||||||||||
Black body radiation - failures of classical physics to explain blackbody radiation spectrum. Particle aspects of radiation: Planck’s hypothesis, radiation law, Photoelectric effect Einstein’s explanation, Compton scattering. Bohr atom model, postulates, stability, and line spectrum. Wave aspects of particles - de Broglie hypothesis of matter waves, Davisson-Germer experiment, consequences of de Broglie concepts of matter waves - electron microscope. Concepts of wave and group velocities, wave packet. Heisenberg uncertainty principle: Elementary proof of Heisenberg’s relation between momentum and position, energy and time, angular momentum and angular position, Consequences of the uncertainty relations: Ground state energy of a particle in one-dimensional box, why an electron cannot exist in the nucleus? | |||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||||||||||||||||
Quantum mechanics
|
|||||||||||||||||||||||||||||||||||||||||||
Schrödinger equation: equation of motion of matter waves - Schrodinger wave equation for a free particle in one- and three-dimensions, Schrodinger wave equation for a particle in the presence of force field, time-dependent and time-independent wave equations, Physical interpretation of the wave function - normalization and orthogonality of wave functions, Probability and probability current density, Admissibility conditions on a wave function. Quantum operators, Eigenfunction and eigenvalue. Expectation values, Postulates of quantum mechanics. Quantum particles under boundary conditions, Applications of quantum mechanics Transmission across a potential barrier, the tunnel effect (qualitative), and particles in a one-dimensional box. One-dimensional simple harmonic oscillator (qualitative) - the concept of zero-point energy. | |||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||||||||||||||||
Quantum mechanics
|
|||||||||||||||||||||||||||||||||||||||||||
Schrödinger equation: equation of motion of matter waves - Schrodinger wave equation for a free particle in one- and three-dimensions, Schrodinger wave equation for a particle in the presence of force field, time-dependent and time-independent wave equations, Physical interpretation of the wave function - normalization and orthogonality of wave functions, Probability and probability current density, Admissibility conditions on a wave function. Quantum operators, Eigenfunction and eigenvalue. Expectation values, Postulates of quantum mechanics. Quantum particles under boundary conditions, Applications of quantum mechanics Transmission across a potential barrier, the tunnel effect (qualitative), and particles in a one-dimensional box. One-dimensional simple harmonic oscillator (qualitative) - the concept of zero-point energy. | |||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||||||||||||||||
Atomic physics
|
|||||||||||||||||||||||||||||||||||||||||||
Structure of atom - Bohr’s model of the hydrogen atom. Excitation and ionization potentials, Frank-Hertz experiment, Orbital angular momentum and orbital magnetic dipole moment, Bohr magneton, Larmor precession, Space quantization, Stern-Gerlach experiment, the concept of spin and spin hypothesis, Spin angular momentum, Vector model of the atom: Spin-orbit interaction - magnetic moment due to orbital and spin motion (qualitative), Coupling schemes- LS and jj, Quantum numbers associated with vector atom model, Spectral terms, Selection rules, Pauli exclusion principle, the electron configuration of single valence electron atoms (alkali spectra) and two-valence electron atoms and their spectra (s, p, d, and f series). Magnetic field effect: Expression for magnetic interaction energy, strong and weak magnetic field effects- normal and anomalous Zeeman effects, energy level diagram for sodium D lines.
| |||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||||||||||||||||
Atomic physics
|
|||||||||||||||||||||||||||||||||||||||||||
Structure of atom - Bohr’s model of the hydrogen atom. Excitation and ionization potentials, Frank-Hertz experiment, Orbital angular momentum and orbital magnetic dipole moment, Bohr magneton, Larmor precession, Space quantization, Stern-Gerlach experiment, the concept of spin and spin hypothesis, Spin angular momentum, Vector model of the atom: Spin-orbit interaction - magnetic moment due to orbital and spin motion (qualitative), Coupling schemes- LS and jj, Quantum numbers associated with vector atom model, Spectral terms, Selection rules, Pauli exclusion principle, the electron configuration of single valence electron atoms (alkali spectra) and two-valence electron atoms and their spectra (s, p, d, and f series). Magnetic field effect: Expression for magnetic interaction energy, strong and weak magnetic field effects- normal and anomalous Zeeman effects, energy level diagram for sodium D lines.
| |||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books:
[1].Kamal, S., & Singh, S. P. (2005). Elements of quantum mechanics: S. Chand & Company Ltd, 2005. [2].Serway, & Jewett. (2014). Physics for scientists and engineers with modern physics (9th ed.): Cengage Learning. [3].Arora, C. L. & Hemne, P. S. (2014). Physics for degree students B.Sc., third year: S. Chand & Company Pvt. Ltd. | |||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading
[4].Thomas, A. Moore. (2003). Six ideas that shaped physics: particles behave like waves: McGraw Hill. [5].Wichman, E. H. (2008). Quantum physics - Berkeley physics course Vol.4: Tata McGraw-Hill. [6].Beiser, A. (2009). Concepts of modern physics: McGraw-Hill. [7].Taylor, J. R., Zafiratos, P. D., & Dubson, M. A. (2009). Modern physics: PHI Learning. [8].Kaur, G., & Pickrell, G. R. (2014). Modern physics: McGraw Hill.
| |||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||||||||||||||
PHY541A - ANALOG AND DIGITAL ELECTRONICS (2022 Batch) | |||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||||
This course gives the students exposure to the fundamentals of solid state electronics and develops the subject to cover basic amplifiers and oscillators, On the digital side, fundamental digital arithmetic is focused on and logic gates are also introduced to enable simple computations. Units I to III caters to local and regional needs. |
|||||||||||||||||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||||||||||||||||
CO1: Understand the basic concepts of analog and digital electronics including semiconductor properties, operational amplifiers, logic gates, combinational and sequential logic. CO2: Apply the theoretical knowledge to design electronic circuits. CO3: Solve specific theoretical and applied problems in electronics. |
Unit-1 |
Teaching Hours:15 |
|||||||||||||||||||||
Electronic Devices
|
||||||||||||||||||||||
Semiconductor diodes: p and n type semiconductors. Barrier formation in PN junction diode. Qualitative idea of current flow mechanism in Forward and Reverse biased diode. PN junction and its characteristics. static and dynamic resistance. Half-wave rectifiers. Centre-tapped and bridge full-wave rectifiers. Calculation of ripple factor and rectification efficiency. Basic idea about capacitor filter, Zener diode and voltage regulation Bipolar Junction Transistors: n-p-n and p-n-p transistors. Characteristics of CB, CE and CC Configurations. Active, cutoff, and saturation regions. Current gains α and β. Relations between α and β. Load Line analysis of transistors. DC load line and Q-point. Voltage divider bias circuit for CE amplifier. h-parameter equivalent circuit. Analysis of a single-stage CE amplifier using Hybrid model. Input and output Impedance. Current, voltage and power Gains. | ||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
|||||||||||||||||||||
Electronic Devices
|
||||||||||||||||||||||
Semiconductor diodes: p and n type semiconductors. Barrier formation in PN junction diode. Qualitative idea of current flow mechanism in Forward and Reverse biased diode. PN junction and its characteristics. static and dynamic resistance. Half-wave rectifiers. Centre-tapped and bridge full-wave rectifiers. Calculation of ripple factor and rectification efficiency. Basic idea about capacitor filter, Zener diode and voltage regulation Bipolar Junction Transistors: n-p-n and p-n-p transistors. Characteristics of CB, CE and CC Configurations. Active, cutoff, and saturation regions. Current gains α and β. Relations between α and β. Load Line analysis of transistors. DC load line and Q-point. Voltage divider bias circuit for CE amplifier. h-parameter equivalent circuit. Analysis of a single-stage CE amplifier using Hybrid model. Input and output Impedance. Current, voltage and power Gains. | ||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
|||||||||||||||||||||
Analog electronics
|
||||||||||||||||||||||
Op Amps: Characteristics of an ideal and practical Op-Amp (IC 741), Open-loop& closed-loop gain. CMRR, Concept of virtual ground. Applications of Op-Amps: (1) Inverting and Non-inverting Amplifiers, (2) Adder, (3) Subtractor, (4) Differentiator, (5) Integrator, (6) Zero Crossing Detector. Sinusoidal oscillators: Barkhausen's criterion for self-sustained oscillations. Determination of frequency of RC oscillator | ||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
|||||||||||||||||||||
Analog electronics
|
||||||||||||||||||||||
Op Amps: Characteristics of an ideal and practical Op-Amp (IC 741), Open-loop& closed-loop gain. CMRR, Concept of virtual ground. Applications of Op-Amps: (1) Inverting and Non-inverting Amplifiers, (2) Adder, (3) Subtractor, (4) Differentiator, (5) Integrator, (6) Zero Crossing Detector. Sinusoidal oscillators: Barkhausen's criterion for self-sustained oscillations. Determination of frequency of RC oscillator | ||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
|||||||||||||||||||||
Digital Electronics
|
||||||||||||||||||||||
Difference between analog and digital circuits. Binary numbers. Decimal to binary and binary to decimal conversion, AND, OR and NOT Gates (realization using Diodes and Transistor). NAND and NOR gates as universal gates. XOR and XNOR gates. De Morgan's theorems. Boolean Laws. Simplification of logic circuit using Boolean algebra. Fundamental products. Minterms and maxterms. Simplification of SOP equations. Karnaugh map (upto 4 variables). Binary addition. Binary subtraction using 2's complement method). Half adders and full adders and subtractors. Flip Flops RS and JK, Binary and decimal counters. Timer IC: IC 555 Pin diagram and its application as astable & monostable multivibrator. | ||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
|||||||||||||||||||||
Digital Electronics
|
||||||||||||||||||||||
Difference between analog and digital circuits. Binary numbers. Decimal to binary and binary to decimal conversion, AND, OR and NOT Gates (realization using Diodes and Transistor). NAND and NOR gates as universal gates. XOR and XNOR gates. De Morgan's theorems. Boolean Laws. Simplification of logic circuit using Boolean algebra. Fundamental products. Minterms and maxterms. Simplification of SOP equations. Karnaugh map (upto 4 variables). Binary addition. Binary subtraction using 2's complement method). Half adders and full adders and subtractors. Flip Flops RS and JK, Binary and decimal counters. Timer IC: IC 555 Pin diagram and its application as astable & monostable multivibrator. | ||||||||||||||||||||||
Text Books And Reference Books: [1].Solid State Electronic Devices, Ben. G. Streetman, 7th Ed, 2015, Pearson Education India [2].Digital Principles & Applications, A.P. Malvino, D.P. Leach & Saha, 7th Ed.,2011, Tata McGraw Hill. | ||||||||||||||||||||||
Essential Reading / Recommended Reading
[1] Op-Amp and Linear Digital Circuits, R. A. Gayakwad, 2000, PHI Learning Pvt. Ltd. [4].Integrated Electronics, J. Millman and C. C. Halkias, 1991, Tata Mc-Graw Hill. | ||||||||||||||||||||||
Evaluation Pattern
| ||||||||||||||||||||||
PHY541B - RENEWABLE ENERGY AND APPLICATIONS (2022 Batch) | ||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
|||||||||||||||||||||
Max Marks:100 |
Credits:3 |
|||||||||||||||||||||
Course Objectives/Course Description |
||||||||||||||||||||||
This module makes the students familiar with the significance of Energyresources in daily life. The important energy sources like solar photovoltaic & solar thermalenergy, wind energy, and ocean energy are discussed. Advancement in the field of fuel cellsand hydrogen as an energy source is also highlighted. Units I to III caters to regional andnational needs. |
||||||||||||||||||||||
Learning Outcome |
||||||||||||||||||||||
CO1: Understand the developments in Renewable energy resources (Solar, Wind and Tidal)
and its significance. CO2: Learn about the emerging developments in energy research (Fuel cells, OTEC). CO3: Gain the basic skills needed to start entrepreneurship pertaining to local and regional needs. |
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||||||||||||||||
Solar Thermal and Photovoltaic Energy
|
|||||||||||||||||||||||||||||||||||||||||||
Review of energy resources, Sustainable energy, Energy Scenario in India, Conventional energy sources, Non-Conventional Energy Resources, Solar energy- Solar Spectrum, Extraterrestrial and Terrestrial radiation, Solar time, Solar day, hour angle, Intensity of solar radiation, solar thermal energy collector, Flat plate collector, Concentration type collector, solar cell fundamentals, solar photovoltaics, PN Junction solar cells, study of I-V characteristic, calculation of efficiency and fill factor, semiconductor materials for solar cell, solar photovoltaic module, photovoltaic system for power generation, case study analysis of solar photovoltaic system. | |||||||||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||||||||||||||||
Solar Thermal and Photovoltaic Energy
|
|||||||||||||||||||||||||||||||||||||||||||
Review of energy resources, Sustainable energy, Energy Scenario in India, Conventional energy sources, Non-Conventional Energy Resources, Solar energy- Solar Spectrum, Extraterrestrial and Terrestrial radiation, Solar time, Solar day, hour angle, Intensity of solar radiation, solar thermal energy collector, Flat plate collector, Concentration type collector, solar cell fundamentals, solar photovoltaics, PN Junction solar cells, study of I-V characteristic, calculation of efficiency and fill factor, semiconductor materials for solar cell, solar photovoltaic module, photovoltaic system for power generation, case study analysis of solar photovoltaic system. | |||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||||||||||||||||
Wind and Ocean Energy
|
|||||||||||||||||||||||||||||||||||||||||||
Origin of winds, Factors affecting wind energy, Nature of winds, Variation of wind speed with height. Energy available in wind- power extraction- Betz limit- Types of Wind turbine- Horizontal axis turbine-Vertical axis wind turbine- Case study analysis. Origin and nature of tidal energy, Tidal energy estimation, tidal energy conversion schemes, Single basin arrangement.Energy and Power from waves, Environmental impacts of Ocean Energy generation. Ocean thermal energy conversion system (OTEC), principle and systems. | |||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||||||||||||||||
Wind and Ocean Energy
|
|||||||||||||||||||||||||||||||||||||||||||
Origin of winds, Factors affecting wind energy, Nature of winds, Variation of wind speed with height. Energy available in wind- power extraction- Betz limit- Types of Wind turbine- Horizontal axis turbine-Vertical axis wind turbine- Case study analysis. Origin and nature of tidal energy, Tidal energy estimation, tidal energy conversion schemes, Single basin arrangement.Energy and Power from waves, Environmental impacts of Ocean Energy generation. Ocean thermal energy conversion system (OTEC), principle and systems. | |||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||||||||||||||||
Emerging trends in Renewable Energy Sources
|
|||||||||||||||||||||||||||||||||||||||||||
Fuel cell- Thermodynamics- Calculation of Gibbs free energy and theoretical voltage of a fuel cell, Variation of efficiency of fuel cell with temperature – comparision with Carnot cycle efficiency. Classification of fuel cells –Phosphoric acid Fuel cell (PAFC), Alkaline Fuel Cell(AFC) –Solid polymer Fuel cell(SPFC) Molten carbonate Fuel cell (MCFC) Solid oxide Fuel cell (SOFC) FUEL for FUEL cells-efficiency of a fuel cell- V-I characteristics of Fuel cell. Losses in fuel cells: Activation polarization- resistance polarization- concentration polarization- Fuel cell power plant hydrogen energy- production- storage conversion to energy sources and safety issues. Thermolectric power conversion, Thermoelectric power generator. | |||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||||||||||||||||
Emerging trends in Renewable Energy Sources
|
|||||||||||||||||||||||||||||||||||||||||||
Fuel cell- Thermodynamics- Calculation of Gibbs free energy and theoretical voltage of a fuel cell, Variation of efficiency of fuel cell with temperature – comparision with Carnot cycle efficiency. Classification of fuel cells –Phosphoric acid Fuel cell (PAFC), Alkaline Fuel Cell(AFC) –Solid polymer Fuel cell(SPFC) Molten carbonate Fuel cell (MCFC) Solid oxide Fuel cell (SOFC) FUEL for FUEL cells-efficiency of a fuel cell- V-I characteristics of Fuel cell. Losses in fuel cells: Activation polarization- resistance polarization- concentration polarization- Fuel cell power plant hydrogen energy- production- storage conversion to energy sources and safety issues. Thermolectric power conversion, Thermoelectric power generator. | |||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: 1. Rajesh, K. P. & Ojha, T.P. (2012). Non-Conventional Energy Sources (3rd ed.), New Delhi: Jain Brothers. 2. Hasan Saeed, S. & Sharma, D.K. (2012). Non-Conventional Energy Resources, New Delhi: S.K. Kataria & Sons. 3. Khan, B. H. (2006). Non-conventional energy resources, New Delhi: Tata McGraw Hill. 4. Rai, G. D. (2000). Non-conventional energy sources(4th ed.): Khanna Publishers. | |||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading 5. Rao, S. & Parulekar, B. B. (1999). Energy Technology, Non-Conventional, Renewable and Conventional (3rd ed.): Khanna Publications. 6. Gupta, B. R. (1998). Generation of electrical energy: Eurasia Publishing House. 7. Solanki, C.S. (2015). Renewable Energy Technologies: A practical guide for beginners, New Delhi: PHI Learning. | |||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern Continuous Internal Assessment (CIA) 50%, End Semester Examination (ESE) 50%
| |||||||||||||||||||||||||||||||||||||||||||
PHY541C - ASTRONOMY AND ASTROPHYSICS (2022 Batch) | |||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||||
Course Description: This module introduces students to the exciting field of astrophysics. This covers the topics such as Fundamentals of Astrophysics, Astronomical Techniques, Sun and Solar System and Stellar Structure. Units I to III cater to national and global needs.
|
|||||||||||||||||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||||||||||||||||
CO1: Get familiarized with the basic properties of stars such as magnitude, spectral type, flux and temperature. CO2: Develop a basic understanding about various processes associated with star formation. CO3: Understand how distinctly high mass stars evolve when compared to the Sun. CO4: Acquire a brief overview about the formation and the expansion of the universe. |
Unit-1 |
Teaching Hours:15 |
Introduction to astronomy
|
|
Stars in the Broader Context of Modern Astrophysics - Useful Astronomical Units – Coordinate systems - Distances – Masses - Luminosity and Magnitudes. Galactic Chemical Evolution. Stellar populations. Basic properties of stars: Introduction - Stellar Distances - Proper Motion - Doppler Shift and Space Motion - Effective Temperatures of Stars. Spectral classification and the HR diagram - Continuum, absorption, and emission spectra of astronomical sources - Collisional excitation and ionization - Stellar Spectral Types - Luminosity Classes - Cluster HR Diagrams. Binary stars - Visual Binaries - Spectroscopic Binaries - Eclipsing Binaries - The Stellar Mass-Luminosity Relation. | |
Unit-1 |
Teaching Hours:15 |
Introduction to astronomy
|
|
Stars in the Broader Context of Modern Astrophysics - Useful Astronomical Units – Coordinate systems - Distances – Masses - Luminosity and Magnitudes. Galactic Chemical Evolution. Stellar populations. Basic properties of stars: Introduction - Stellar Distances - Proper Motion - Doppler Shift and Space Motion - Effective Temperatures of Stars. Spectral classification and the HR diagram - Continuum, absorption, and emission spectra of astronomical sources - Collisional excitation and ionization - Stellar Spectral Types - Luminosity Classes - Cluster HR Diagrams. Binary stars - Visual Binaries - Spectroscopic Binaries - Eclipsing Binaries - The Stellar Mass-Luminosity Relation. | |
Unit-2 |
Teaching Hours:15 |
Stellar astrophysics
|
|
The physical laws of stellar structure, Hydrostatic Equilibrium, Equation of state, Modes of energy transport, Gravitational contraction, thermonuclear reactions. Star formation: Protostars, pre-main sequence stars, main-sequence stars, Brown dwarfs. Stellar evolution: evolution of low mass stars, evolution of high mass stars, Synthesis of elements in stars. Final fate of stars: White dwarfs, Neutron stars, Pulsars, Black holes - Schwarzschild radius. | |
Unit-2 |
Teaching Hours:15 |
Stellar astrophysics
|
|
The physical laws of stellar structure, Hydrostatic Equilibrium, Equation of state, Modes of energy transport, Gravitational contraction, thermonuclear reactions. Star formation: Protostars, pre-main sequence stars, main-sequence stars, Brown dwarfs. Stellar evolution: evolution of low mass stars, evolution of high mass stars, Synthesis of elements in stars. Final fate of stars: White dwarfs, Neutron stars, Pulsars, Black holes - Schwarzschild radius. | |
Unit-3 |
Teaching Hours:15 |
Galaxies and universe
|
|
Structure of the Milky way Galaxy, Star clusters, Hubble’s classification of galaxy, galactic dynamics, Kepler’s third law and the galaxy’s mass. Universe: Galaxies beyond the Milky way, Theories of universe, Olbers’ paradox, Hubble’s law and the distance scale, expanding universe, Cosmic microwave background radiation, origin and evolution of the universe. | |
Unit-3 |
Teaching Hours:15 |
Galaxies and universe
|
|
Structure of the Milky way Galaxy, Star clusters, Hubble’s classification of galaxy, galactic dynamics, Kepler’s third law and the galaxy’s mass. Universe: Galaxies beyond the Milky way, Theories of universe, Olbers’ paradox, Hubble’s law and the distance scale, expanding universe, Cosmic microwave background radiation, origin and evolution of the universe. | |
Text Books And Reference Books: [1]. M. Zeilik and S. A. Gregory: Introductory Astronomy and Astrophysics, Saunders College Publication, 1998. [2]. B. W. Carroll and D. A. Ostlie: An Introduction to Modern Astrophysics, Pearson Addison-Wesley, 2007. [3]. R. Bowers and T. Deeming: Astrophysics I & II, Bartlett, 1984, [4]. R. Kippenhahn, A. Weigert and A. Weiss: Stellar Structure and Evolution, 2 nd Edn, Springer-Verlag, 1990. | |
Essential Reading / Recommended Reading [5]. J. P. Cox and R. T. Giuli: Principles of Stellar structure, Golden-Breah, 1968. [6]. M. Harwit: Astronomy Concepts, Springer-Verlag, 1988 [7]. W. J. Kaufmann: Universe, W. H. Freeman and Company, 4th Edn.1994. [8]. K. F. Kuhn: Astronomy -A Journey into Science, West Publishing Company, 1989 [9]. H. Zirin: Astrophysics of the Sun, CUP, 1988. [10]. P. V. Foukal: Solar Astrophysics, John Wiley, 1990. | |
Evaluation Pattern Continuous Internal Assessment (CIA) 50%, End Semester Examination (ESE) 50% CIA I (Assignment/test/group task/presentation) - Before Mid Semester Exam (MSE) - 20 Marks - Reduced to 10 Marks CIA II (Mid Semester Test (MST)) - Centralised - 50 Marks - Reduced to 25 Marks CIA III (Assignment/test/group task/presentation) - After MST - 20 Marks - Reduced to 10 Marks Attendance (75 – 79: 1 mark, 80 – 84: 2 marks, 85 – 89: 3 marks, 90 – 94: 4 marks, 95 – 100: 5 marks) - 5 Marks End Semester Exam - Centralised - 100 Marks - Reduced to 50 Marks | |
PHY551 - MODERN PHYSICS - I LAB (2022 Batch) | |
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
Max Marks:50 |
Credits:2 |
Course Objectives/Course Description |
|
The experiments related to atomic and modern physics included in this course expose the students to many fundamental experiments in physics and their detailed analysis and conclusions. This provides a strong foundation to the understanding of physics. |
|
Learning Outcome |
|
CO1: Understand the theory involved with the experiment CO2: Appreciate the developments in modern physics through experiments. CO3: Analyze the experimental data with the standard data. |
Unit-1 |
Teaching Hours:30 |
||||||||||||||||
List of experiments
|
|||||||||||||||||
1.Determination of Planck’s constant using photocell and LEDs/filters. 2.Determination of absorption coefficient of light in KMnO4 and water media. 3.Study of black body radiation and determination of Stefan-Boltzmann constant. 4.Determination of wavelength of absorption bands of KMnO4. 5.Determination of e/m of the electron using Thomson’s method. 6.Determination of ionization potential of mercury/xenon. 7.Study of the hydrogen spectrum and determination of the Rydberg constant. 8.Study of photoelectric effect: verification of observations of photoelectric effect and determination of work function. 9.Determination of charge of the electron using the Millikan oil drop method. 10. Study of the Zeeman effect | |||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||
List of experiments
|
|||||||||||||||||
1.Determination of Planck’s constant using photocell and LEDs/filters. 2.Determination of absorption coefficient of light in KMnO4 and water media. 3.Study of black body radiation and determination of Stefan-Boltzmann constant. 4.Determination of wavelength of absorption bands of KMnO4. 5.Determination of e/m of the electron using Thomson’s method. 6.Determination of ionization potential of mercury/xenon. 7.Study of the hydrogen spectrum and determination of the Rydberg constant. 8.Study of photoelectric effect: verification of observations of photoelectric effect and determination of work function. 9.Determination of charge of the electron using the Millikan oil drop method. 10. Study of the Zeeman effect | |||||||||||||||||
Text Books And Reference Books:
[1].Serway, & Jewett. (2014). Physics for scientists and engineers with modern physics (9th ed.): Cengage Learning. [2].Wichman, E. H. (2008). Quantum physics - Berkeley physics course Vol.4: Tata McGraw-Hill. | |||||||||||||||||
Essential Reading / Recommended Reading
[3].Beiser, A. (2009). Concepts of modern physics: McGraw-Hill. [4].Taylor, J. R., Zafiratos, P. D., & Dubson, M. A. (2009). Modern physics: PHI Learning.
| |||||||||||||||||
Evaluation Pattern
| |||||||||||||||||
PHY551A - ANALOG AND DIGITAL ELECTRONICS LAB (2022 Batch) | |||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||||||
Max Marks:50 |
Credits:2 |
||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||
This course gives a good understanding of the functioning and applications of basic solid-state electronic devices and their circuits like amplifiers and oscillators. |
|||||||||||||||||
Learning Outcome |
|||||||||||||||||
CO1: Understand and get familiarized with assembling basic electronic building block circuits. CO2: Understand the working of various analog and digital electronics devices. CO3: Acquire practical skills that enable them to get employed in industries or pursue higher studies or research assignments that meet the local and national needs. |
Unit-1 |
Teaching Hours:30 |
|||||||||||||||||||||
List of experiments
|
||||||||||||||||||||||
Study and compare IV characteristics of PN diode, Zener diode, LED. 2. To study transistor characteristics in CE mode 3. To design an inverting amplifier of given gain using Op-amp 741 and study its frequency response 4. To design a non-inverting amplifier of given gain using Op-amp 741 and study its Frequency Response. 5. To design a phase shift oscillator for a given frequency of operation using an Op amp. 6. Op amp as differentiator 7. Op amp as integrator 8. Half wave and Full wave Rectifiers 7. To verify and design AND, OR, NOT, and XOR gates using NAND. 9. Half and full adder circuits. 10. Astable multivibrator of given specifications using 555 Timer IC. 11. Monostable multivibrator of given specifications using 555 Timer IC.
| ||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
|||||||||||||||||||||
List of experiments
|
||||||||||||||||||||||
Study and compare IV characteristics of PN diode, Zener diode, LED. 2. To study transistor characteristics in CE mode 3. To design an inverting amplifier of given gain using Op-amp 741 and study its frequency response 4. To design a non-inverting amplifier of given gain using Op-amp 741 and study its Frequency Response. 5. To design a phase shift oscillator for a given frequency of operation using an Op amp. 6. Op amp as differentiator 7. Op amp as integrator 8. Half wave and Full wave Rectifiers 7. To verify and design AND, OR, NOT, and XOR gates using NAND. 9. Half and full adder circuits. 10. Astable multivibrator of given specifications using 555 Timer IC. 11. Monostable multivibrator of given specifications using 555 Timer IC.
| ||||||||||||||||||||||
Text Books And Reference Books:
Basic Electronics: A text lab manual, P.B. Zbar, A.P. Malvino, M.A. Miller, 1994, Mc-Graw Hill. [2]. Electronic circuits and devices by Boylstead, Pearson Education 2002 Electronic circuits and devices by Boylstead, Pearson Education 2002 BSc– Physics– Syllabus 2014-15 15 [3]. OP-Amps and Linear Integrated Circuit, R. A. Gayakwad, 4th edition, 2000, Prentice Hall. | ||||||||||||||||||||||
Essential Reading / Recommended Reading Basic Electronics: A text lab manual, P.B. Zbar, A.P. Malvino, M.A. Miller, 1994, Mc-Graw Hill. | ||||||||||||||||||||||
Evaluation Pattern
| ||||||||||||||||||||||
PHY551B - RENEWABLE ENERGY AND APPLICATIONS LAB (2022 Batch) | ||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
|||||||||||||||||||||
Max Marks:50 |
Credits:2 |
|||||||||||||||||||||
Course Objectives/Course Description |
||||||||||||||||||||||
This module makes the students get the practical knowledge of Energy resources & converters. The important energy sources like solar photovoltaic, thermo electric power and Fuel cells are highlighted. |
||||||||||||||||||||||
Learning Outcome |
||||||||||||||||||||||
CO1: Understand the working of energy conversion devices used in renewable energy CO2: Calculate the thermodynamic parameters (efficiency, fill factor, Gibbs free energy, entropy etc.) CO3: Know about the latest developments and emerging trends in renewable energy devices (Fuel cells, Hydrogen generation etc.) CO4: Apply the concepts for solving local, national and global energy problems |
Unit-1 |
Teaching Hours:30 |
||||||||||||||||
Renewable Energy and Applications Lab
|
|||||||||||||||||
List of experiments 1. Thermo emf analysis-Verification of thermoelectric laws 2. V-I characteristics of a solar cell 3. Efficiency and fill factor of solar cell 4. Verification of Inverse square law of a solar cell 5. Photo transistor-Characteristics 6. Thermo electric power of n-type and p-type Bismuth Telluride by differential method. 7. Verification of Fuel cell characteristics. 8. Measurement of Piezoelectric constant of PVDF | |||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||
Renewable Energy and Applications Lab
|
|||||||||||||||||
List of experiments 1. Thermo emf analysis-Verification of thermoelectric laws 2. V-I characteristics of a solar cell 3. Efficiency and fill factor of solar cell 4. Verification of Inverse square law of a solar cell 5. Photo transistor-Characteristics 6. Thermo electric power of n-type and p-type Bismuth Telluride by differential method. 7. Verification of Fuel cell characteristics. 8. Measurement of Piezoelectric constant of PVDF | |||||||||||||||||
Text Books And Reference Books: [1]. Chetan Singh Solanki, Renewable Energy Technologies: A practical guide for beginners, PHI Learning (Pvt) Ltd, New Delhi, 2013.[2]. B. H. Khan: Non-conventional energy resources, TMH publishing, New Delhi2006.[3].Rai, G. D. (2000). Non-conventional energy sources (4th ed.): Khanna Publishers.
| |||||||||||||||||
Essential Reading / Recommended Reading [5].Rao, S., & Parulekar, B. B. (1999). Energy technology, non-conventional, renewable and conventional (3rd ed.): Khanna Publications.[6].Gupta, B. R. (1998). Generation of electrical energy: Eurasia Publishing House.[7].Solanki, C.S. (2015). Renewable energy technologies: A practical guide for beginners, New Delhi: PHI Learning. | |||||||||||||||||
Evaluation Pattern Practical Continuous Internal Assessment (CIA) 60%, End Semester Examination (ESE) 40%
| |||||||||||||||||
PHY551C - ASTRONOMY AND ASTROPHYSICS LAB (2022 Batch) | |||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||||||
Max Marks:50 |
Credits:2 |
||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||
This lab module makes the students familiar with the various experiments in Astrophysics. The suits of experiments cover a broad spectrum from the color-magnitude diagram of star clusters to the study of the expansion of the universe. |
|||||||||||||||||
Learning Outcome |
|||||||||||||||||
CO1: Analyze the spectra of stars and evaluate how the spectral lines vary for stars of various spectral types. CO2: Construct the color-magnitude diagram of star clusters and understand the evolutionary phase of a star from its location in the diagram. CO3: Study various distance measurement techniques and analyze the kinematics of stars. CO4: Study the distance - redshift relation which was developed by Edwin Hubble to understand the expansion of the universe. |
Unit-1 |
Teaching Hours:30 |
||||||||||||||||
List of experiments
|
|||||||||||||||||
1. To study the spectral classification of a given sample of stars. 2. To construct the HR Diagram of Star Clusters 3. To study the sunspots using CLEA software 4. To determine the distance of star clusters using CLEA software 5.To study the chemical composition of evolved stars 6. To acquire the magnitude data for star cluster from Webda database and estimate the age 7. To determine the membership of stars in clusters using Gaia data 8. To estimate the equivalent width measurements of emission line stars | |||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||
List of experiments
|
|||||||||||||||||
1. To study the spectral classification of a given sample of stars. 2. To construct the HR Diagram of Star Clusters 3. To study the sunspots using CLEA software 4. To determine the distance of star clusters using CLEA software 5.To study the chemical composition of evolved stars 6. To acquire the magnitude data for star cluster from Webda database and estimate the age 7. To determine the membership of stars in clusters using Gaia data 8. To estimate the equivalent width measurements of emission line stars | |||||||||||||||||
Text Books And Reference Books:
[1] W. J. Kaufmann: Universe, W. H. Freeman and Company, 4th Edn.1994. [2] K. F. Kuhn: Astronomy -A Journey into Science, West Publishing Company, 1989 [3] H. Zirin: Astrophysics of the Sun, CUP, 1988. [4] P. V. Foukal: Solar Astrophysics, John Wiley, 1990. | |||||||||||||||||
Essential Reading / Recommended Reading
Some of the experiments are planned using CLEA software (http://www3.gettysburg.edu/~marschal/clea/speclab.html)
| |||||||||||||||||
Evaluation Pattern
| |||||||||||||||||
CHE631 - CHEMISTRY VI-MOLECULES OF LIFE (2022 Batch) | |||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||||||||||
Max Marks:100 |
Credits:3 |
||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||
This course creates awareness about the various topics in biochemistry and the students are made to realize the role of the same in the life processes. The course emphasizes on the importance of leading a healthy life and the significance of a balanced diet which is essential to maintain nutritional requirements.
|
|||||||||||||||||
Learning Outcome |
|||||||||||||||||
CO1: Recall the major contributions in the development of biochemistry and significance of various biomolecules. CO2: Examine the structure and properties of water and biomolecules in living organisms. CO3: Predict the reactions related to carbohydrates, proteins, enzymes, nucleic acids and lipids. CO4: Explain the concepts of energy and nutrition in biosystems. |
Unit-1 |
Teaching Hours:2 |
|||||||||||||||||||||||||||||||||||
Introduction
|
||||||||||||||||||||||||||||||||||||
Development of biochemistry- elemental and biochemical composition of living organisms-role of water in biological systems. | ||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:2 |
|||||||||||||||||||||||||||||||||||
Introduction
|
||||||||||||||||||||||||||||||||||||
Development of biochemistry- elemental and biochemical composition of living organisms-role of water in biological systems. | ||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:2 |
|||||||||||||||||||||||||||||||||||
Introduction
|
||||||||||||||||||||||||||||||||||||
Development of biochemistry- elemental and biochemical composition of living organisms-role of water in biological systems. | ||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:2 |
|||||||||||||||||||||||||||||||||||
Introduction
|
||||||||||||||||||||||||||||||||||||
Development of biochemistry- elemental and biochemical composition of living organisms-role of water in biological systems. | ||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:4 |
|||||||||||||||||||||||||||||||||||
Carbohydrates
|
||||||||||||||||||||||||||||||||||||
Structure and biological importance of derived monosaccharides-amino sugars, sugar acids sugar phosphates-oligosaccharides-isomaltose, cellobiose, trehalose-polysaccharides-starch, glycogen and cellulose. Heteropolysaccharides-Occurrence and composition of Hyaluronic acid-chondroitin and its sulphates-dermatan sulphate-heparin-agar-agar. | ||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:4 |
|||||||||||||||||||||||||||||||||||
Carbohydrates
|
||||||||||||||||||||||||||||||||||||
Structure and biological importance of derived monosaccharides-amino sugars, sugar acids sugar phosphates-oligosaccharides-isomaltose, cellobiose, trehalose-polysaccharides-starch, glycogen and cellulose. Heteropolysaccharides-Occurrence and composition of Hyaluronic acid-chondroitin and its sulphates-dermatan sulphate-heparin-agar-agar. | ||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:4 |
|||||||||||||||||||||||||||||||||||
Carbohydrates
|
||||||||||||||||||||||||||||||||||||
Structure and biological importance of derived monosaccharides-amino sugars, sugar acids sugar phosphates-oligosaccharides-isomaltose, cellobiose, trehalose-polysaccharides-starch, glycogen and cellulose. Heteropolysaccharides-Occurrence and composition of Hyaluronic acid-chondroitin and its sulphates-dermatan sulphate-heparin-agar-agar. | ||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:4 |
|||||||||||||||||||||||||||||||||||
Carbohydrates
|
||||||||||||||||||||||||||||||||||||
Structure and biological importance of derived monosaccharides-amino sugars, sugar acids sugar phosphates-oligosaccharides-isomaltose, cellobiose, trehalose-polysaccharides-starch, glycogen and cellulose. Heteropolysaccharides-Occurrence and composition of Hyaluronic acid-chondroitin and its sulphates-dermatan sulphate-heparin-agar-agar. | ||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
Amino Acids, Peptides and Proteins
|
||||||||||||||||||||||||||||||||||||
Classification of Amino Acids, Preparation of Amino Acids: Strecker synthesis with mechanism, Gabriel’s phthalimide synthesis. Zwitterion structure and Isoelectric point. Electrophoresis. Reactions of amino acids- esterification of –COOH group, acetylation of –NH2 group, complexation with Cu2+ ions, ninhydrin, Edman and Sanger’s reagents. Biological importance of proteins. Overview of Primary, Secondary, Tertiary and Quaternary Structure of proteins. Determination of Primary structure of Peptides by degradation using Edmann reagent and Sanger’s reagent. Synthesis of simple peptides (upto tripeptides) by N-protection (t-butyloxycarbonyl and phthaloyl) & C-activating groups. Use of DCC as a coupling agent in peptide bond formation. Merrifield solid-phase synthesis. Introduction to peptidomimetics.
| ||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
Amino Acids, Peptides and Proteins
|
||||||||||||||||||||||||||||||||||||
Classification of Amino Acids, Preparation of Amino Acids: Strecker synthesis with mechanism, Gabriel’s phthalimide synthesis. Zwitterion structure and Isoelectric point. Electrophoresis. Reactions of amino acids- esterification of –COOH group, acetylation of –NH2 group, complexation with Cu2+ ions, ninhydrin, Edman and Sanger’s reagents. Biological importance of proteins. Overview of Primary, Secondary, Tertiary and Quaternary Structure of proteins. Determination of Primary structure of Peptides by degradation using Edmann reagent and Sanger’s reagent. Synthesis of simple peptides (upto tripeptides) by N-protection (t-butyloxycarbonyl and phthaloyl) & C-activating groups. Use of DCC as a coupling agent in peptide bond formation. Merrifield solid-phase synthesis. Introduction to peptidomimetics.
| ||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
Amino Acids, Peptides and Proteins
|
||||||||||||||||||||||||||||||||||||
Classification of Amino Acids, Preparation of Amino Acids: Strecker synthesis with mechanism, Gabriel’s phthalimide synthesis. Zwitterion structure and Isoelectric point. Electrophoresis. Reactions of amino acids- esterification of –COOH group, acetylation of –NH2 group, complexation with Cu2+ ions, ninhydrin, Edman and Sanger’s reagents. Biological importance of proteins. Overview of Primary, Secondary, Tertiary and Quaternary Structure of proteins. Determination of Primary structure of Peptides by degradation using Edmann reagent and Sanger’s reagent. Synthesis of simple peptides (upto tripeptides) by N-protection (t-butyloxycarbonyl and phthaloyl) & C-activating groups. Use of DCC as a coupling agent in peptide bond formation. Merrifield solid-phase synthesis. Introduction to peptidomimetics.
| ||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
Amino Acids, Peptides and Proteins
|
||||||||||||||||||||||||||||||||||||
Classification of Amino Acids, Preparation of Amino Acids: Strecker synthesis with mechanism, Gabriel’s phthalimide synthesis. Zwitterion structure and Isoelectric point. Electrophoresis. Reactions of amino acids- esterification of –COOH group, acetylation of –NH2 group, complexation with Cu2+ ions, ninhydrin, Edman and Sanger’s reagents. Biological importance of proteins. Overview of Primary, Secondary, Tertiary and Quaternary Structure of proteins. Determination of Primary structure of Peptides by degradation using Edmann reagent and Sanger’s reagent. Synthesis of simple peptides (upto tripeptides) by N-protection (t-butyloxycarbonyl and phthaloyl) & C-activating groups. Use of DCC as a coupling agent in peptide bond formation. Merrifield solid-phase synthesis. Introduction to peptidomimetics.
| ||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
Enzymes and correlation with drug action
|
||||||||||||||||||||||||||||||||||||
Classification-active site-Fischer and Koshland models-Enzyme kinetics- factors affecting rate of enzymatic reactions- Michaelis- Menten equation.Mechanism of enzyme action, factors affecting enzyme action, Coenzymes andcofactors and their role in biological reactions, Specificity of enzyme action (including stereospecificity), Enzyme inhibitors and their importance, phenomenonof inhibition (Competitive and Non- competitive inhibition). Theories of drug activity: Occupancy theory, rate theory and induced fit theory. Structure –activity relationships of drug molecules. | ||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
Enzymes and correlation with drug action
|
||||||||||||||||||||||||||||||||||||
Classification-active site-Fischer and Koshland models-Enzyme kinetics- factors affecting rate of enzymatic reactions- Michaelis- Menten equation.Mechanism of enzyme action, factors affecting enzyme action, Coenzymes andcofactors and their role in biological reactions, Specificity of enzyme action (including stereospecificity), Enzyme inhibitors and their importance, phenomenonof inhibition (Competitive and Non- competitive inhibition). Theories of drug activity: Occupancy theory, rate theory and induced fit theory. Structure –activity relationships of drug molecules. | ||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
Enzymes and correlation with drug action
|
||||||||||||||||||||||||||||||||||||
Classification-active site-Fischer and Koshland models-Enzyme kinetics- factors affecting rate of enzymatic reactions- Michaelis- Menten equation.Mechanism of enzyme action, factors affecting enzyme action, Coenzymes andcofactors and their role in biological reactions, Specificity of enzyme action (including stereospecificity), Enzyme inhibitors and their importance, phenomenonof inhibition (Competitive and Non- competitive inhibition). Theories of drug activity: Occupancy theory, rate theory and induced fit theory. Structure –activity relationships of drug molecules. | ||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
Enzymes and correlation with drug action
|
||||||||||||||||||||||||||||||||||||
Classification-active site-Fischer and Koshland models-Enzyme kinetics- factors affecting rate of enzymatic reactions- Michaelis- Menten equation.Mechanism of enzyme action, factors affecting enzyme action, Coenzymes andcofactors and their role in biological reactions, Specificity of enzyme action (including stereospecificity), Enzyme inhibitors and their importance, phenomenonof inhibition (Competitive and Non- competitive inhibition). Theories of drug activity: Occupancy theory, rate theory and induced fit theory. Structure –activity relationships of drug molecules. | ||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Nucleic Acids
|
||||||||||||||||||||||||||||||||||||
Components of nucleic acids: Adenine, guanine, thymine and Cytosine (Structure only), other components of nucleic acids, Nucleosides and nucleotides (nomenclature), Structure of polynucleotides; Structure of DNA (Watson-Crick model) and RNA (types of RNA), Genetic Code, Biological roles of DNA and RNA: Replication, Transcription and Translation. | ||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Nucleic Acids
|
||||||||||||||||||||||||||||||||||||
Components of nucleic acids: Adenine, guanine, thymine and Cytosine (Structure only), other components of nucleic acids, Nucleosides and nucleotides (nomenclature), Structure of polynucleotides; Structure of DNA (Watson-Crick model) and RNA (types of RNA), Genetic Code, Biological roles of DNA and RNA: Replication, Transcription and Translation. | ||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Nucleic Acids
|
||||||||||||||||||||||||||||||||||||
Components of nucleic acids: Adenine, guanine, thymine and Cytosine (Structure only), other components of nucleic acids, Nucleosides and nucleotides (nomenclature), Structure of polynucleotides; Structure of DNA (Watson-Crick model) and RNA (types of RNA), Genetic Code, Biological roles of DNA and RNA: Replication, Transcription and Translation. | ||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Nucleic Acids
|
||||||||||||||||||||||||||||||||||||
Components of nucleic acids: Adenine, guanine, thymine and Cytosine (Structure only), other components of nucleic acids, Nucleosides and nucleotides (nomenclature), Structure of polynucleotides; Structure of DNA (Watson-Crick model) and RNA (types of RNA), Genetic Code, Biological roles of DNA and RNA: Replication, Transcription and Translation. | ||||||||||||||||||||||||||||||||||||
Unit-6 |
Teaching Hours:6 |
|||||||||||||||||||||||||||||||||||
Lipids
|
||||||||||||||||||||||||||||||||||||
Introduction to lipids, classification. Oils and fats: Common fatty acids present in oils and fats, Omega fatty acids, Trans fats, Hydrogenation, Saponification value, Iodine number. Biological importance of triglycerides, phospholipids, glycolipids, and steroids (cholesterol). Steroids: Classification - Cholesterol and sex hormones (structure and biological functions only) - Elementary idea of HDL and LDL – Cholesterol and heart attack – Anabolic steroids and their abuse (elementary idea only) –Doping in sports (a brief study). | ||||||||||||||||||||||||||||||||||||
Unit-6 |
Teaching Hours:6 |
|||||||||||||||||||||||||||||||||||
Lipids
|
||||||||||||||||||||||||||||||||||||
Introduction to lipids, classification. Oils and fats: Common fatty acids present in oils and fats, Omega fatty acids, Trans fats, Hydrogenation, Saponification value, Iodine number. Biological importance of triglycerides, phospholipids, glycolipids, and steroids (cholesterol). Steroids: Classification - Cholesterol and sex hormones (structure and biological functions only) - Elementary idea of HDL and LDL – Cholesterol and heart attack – Anabolic steroids and their abuse (elementary idea only) –Doping in sports (a brief study). | ||||||||||||||||||||||||||||||||||||
Unit-6 |
Teaching Hours:6 |
|||||||||||||||||||||||||||||||||||
Lipids
|
||||||||||||||||||||||||||||||||||||
Introduction to lipids, classification. Oils and fats: Common fatty acids present in oils and fats, Omega fatty acids, Trans fats, Hydrogenation, Saponification value, Iodine number. Biological importance of triglycerides, phospholipids, glycolipids, and steroids (cholesterol). Steroids: Classification - Cholesterol and sex hormones (structure and biological functions only) - Elementary idea of HDL and LDL – Cholesterol and heart attack – Anabolic steroids and their abuse (elementary idea only) –Doping in sports (a brief study). | ||||||||||||||||||||||||||||||||||||
Unit-6 |
Teaching Hours:6 |
|||||||||||||||||||||||||||||||||||
Lipids
|
||||||||||||||||||||||||||||||||||||
Introduction to lipids, classification. Oils and fats: Common fatty acids present in oils and fats, Omega fatty acids, Trans fats, Hydrogenation, Saponification value, Iodine number. Biological importance of triglycerides, phospholipids, glycolipids, and steroids (cholesterol). Steroids: Classification - Cholesterol and sex hormones (structure and biological functions only) - Elementary idea of HDL and LDL – Cholesterol and heart attack – Anabolic steroids and their abuse (elementary idea only) –Doping in sports (a brief study). | ||||||||||||||||||||||||||||||||||||
Unit-7 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
Concept of Energy in Biosystems
|
||||||||||||||||||||||||||||||||||||
Oxidation of foodstuff (organic molecules) as a source of energy for cells. Bioenergetics-ATP and other high energy molecules-energy coupling in biological reactions-stepwise process of biological oxidation-Mitochondrial electron transport chain-oxidative phosphorylation- Substrate level phosphorylation. Introduction to Metabolism (catabolism, anabolism). Conversion of food into energy. Outline of catabolic pathways of Carbohydrate-Glycolysis, Fermentation, Kreb’s Cycle. Overview of catabolic pathways of Fats and Proteins. | ||||||||||||||||||||||||||||||||||||
Unit-7 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
Concept of Energy in Biosystems
|
||||||||||||||||||||||||||||||||||||
Oxidation of foodstuff (organic molecules) as a source of energy for cells. Bioenergetics-ATP and other high energy molecules-energy coupling in biological reactions-stepwise process of biological oxidation-Mitochondrial electron transport chain-oxidative phosphorylation- Substrate level phosphorylation. Introduction to Metabolism (catabolism, anabolism). Conversion of food into energy. Outline of catabolic pathways of Carbohydrate-Glycolysis, Fermentation, Kreb’s Cycle. Overview of catabolic pathways of Fats and Proteins. | ||||||||||||||||||||||||||||||||||||
Unit-7 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
Concept of Energy in Biosystems
|
||||||||||||||||||||||||||||||||||||
Oxidation of foodstuff (organic molecules) as a source of energy for cells. Bioenergetics-ATP and other high energy molecules-energy coupling in biological reactions-stepwise process of biological oxidation-Mitochondrial electron transport chain-oxidative phosphorylation- Substrate level phosphorylation. Introduction to Metabolism (catabolism, anabolism). Conversion of food into energy. Outline of catabolic pathways of Carbohydrate-Glycolysis, Fermentation, Kreb’s Cycle. Overview of catabolic pathways of Fats and Proteins. | ||||||||||||||||||||||||||||||||||||
Unit-7 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
Concept of Energy in Biosystems
|
||||||||||||||||||||||||||||||||||||
Oxidation of foodstuff (organic molecules) as a source of energy for cells. Bioenergetics-ATP and other high energy molecules-energy coupling in biological reactions-stepwise process of biological oxidation-Mitochondrial electron transport chain-oxidative phosphorylation- Substrate level phosphorylation. Introduction to Metabolism (catabolism, anabolism). Conversion of food into energy. Outline of catabolic pathways of Carbohydrate-Glycolysis, Fermentation, Kreb’s Cycle. Overview of catabolic pathways of Fats and Proteins. | ||||||||||||||||||||||||||||||||||||
Unit-8 |
Teaching Hours:4 |
|||||||||||||||||||||||||||||||||||
Nutrition Biochemistry
|
||||||||||||||||||||||||||||||||||||
*Vitamins-definition-classification and deficiency manifestations of water soluble and fat soluble vitamins-coenzyme functions of B-complex vitamins. *Hormones. Definition- classification into amino acid derivatives, peptide and polypeptide`hormones and steroid hormones with examples and functions.
| ||||||||||||||||||||||||||||||||||||
Unit-8 |
Teaching Hours:4 |
|||||||||||||||||||||||||||||||||||
Nutrition Biochemistry
|
||||||||||||||||||||||||||||||||||||
*Vitamins-definition-classification and deficiency manifestations of water soluble and fat soluble vitamins-coenzyme functions of B-complex vitamins. *Hormones. Definition- classification into amino acid derivatives, peptide and polypeptide`hormones and steroid hormones with examples and functions.
| ||||||||||||||||||||||||||||||||||||
Unit-8 |
Teaching Hours:4 |
|||||||||||||||||||||||||||||||||||
Nutrition Biochemistry
|
||||||||||||||||||||||||||||||||||||
*Vitamins-definition-classification and deficiency manifestations of water soluble and fat soluble vitamins-coenzyme functions of B-complex vitamins. *Hormones. Definition- classification into amino acid derivatives, peptide and polypeptide`hormones and steroid hormones with examples and functions.
| ||||||||||||||||||||||||||||||||||||
Unit-8 |
Teaching Hours:4 |
|||||||||||||||||||||||||||||||||||
Nutrition Biochemistry
|
||||||||||||||||||||||||||||||||||||
*Vitamins-definition-classification and deficiency manifestations of water soluble and fat soluble vitamins-coenzyme functions of B-complex vitamins. *Hormones. Definition- classification into amino acid derivatives, peptide and polypeptide`hormones and steroid hormones with examples and functions.
| ||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: [1] J. L Jain. Fundamentals of Biochemistry. 5th ed. S.Chand & co, reprint 2013 ed. | ||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading [1] A. Lehninger, David L. Nelson, and Michael M. Cox. Principles of Biochemistry. 8th ed.W. H. Freeman, 2012. [2] Conn, and Stumpf. Outlines of Biochemistry. 5thed. John Wiley & sons, inc, 2012. [3] P.C Champe and R. A. Harvey. Biochemistry.4th ed. Lippincott & co, 2011. [4] M. Devlin and Thomas. Textbook of Biochemistry. 7th ed. Wiley, 2011. [5] Voet, and Voet. Biochemistry. 6th ed. Wiley, 2012. | ||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| ||||||||||||||||||||||||||||||||||||
CHE641A - CHEMISTRY VIA-INDUSTRIAL MATERIALS AND ENVIRONMENT (2022 Batch) | ||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
|||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
|||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
||||||||||||||||||||||||||||||||||||
This course is intended to impart a deep knowledge in the fields of Industrial and Environmental Chemistry. The course emphasizes on the applications of various industrial chemicals. It gives an insight on the importance of preserving our natural resources and conserving our environment.
|
||||||||||||||||||||||||||||||||||||
Learning Outcome |
||||||||||||||||||||||||||||||||||||
CO1: Explain the principles and concepts involved in the manufacture of industrial chemicals. CO2: Predict the hazards involved in storage, handling and transportation of industrial chemicals. CO3: Develops environment sensitivity and social responsibility to limit the pollution of water. CO4: Discuss the significance of renewable energy sources and environmental protection. |
Unit-1 |
Teaching Hours:4 |
|||||||||||||||||||||||||||||||||||
Industrial safety and safe practices
|
||||||||||||||||||||||||||||||||||||
Safety aspect related to transport, handling and storage flammable liquids and gases and toxic materials. Safety aspects at process development and design stage. | ||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:4 |
|||||||||||||||||||||||||||||||||||
Industrial safety and safe practices
|
||||||||||||||||||||||||||||||||||||
Safety aspect related to transport, handling and storage flammable liquids and gases and toxic materials. Safety aspects at process development and design stage. | ||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:4 |
|||||||||||||||||||||||||||||||||||
Industrial safety and safe practices
|
||||||||||||||||||||||||||||||||||||
Safety aspect related to transport, handling and storage flammable liquids and gases and toxic materials. Safety aspects at process development and design stage. | ||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:4 |
|||||||||||||||||||||||||||||||||||
Industrial safety and safe practices
|
||||||||||||||||||||||||||||||||||||
Safety aspect related to transport, handling and storage flammable liquids and gases and toxic materials. Safety aspects at process development and design stage. | ||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:4 |
|||||||||||||||||||||||||||||||||||
Industrial gases and inorganic Chemicals
|
||||||||||||||||||||||||||||||||||||
Large scale production, uses, storage and hazards in handling the following gases: oxygen, nitrogen, hydrogen, acetylene. Manufacture, application, analysis and hazards in handling the following chemicals: hydrochloric acid, nitric acid, sulphuric acid, caustic soda, | ||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:4 |
|||||||||||||||||||||||||||||||||||
Industrial gases and inorganic Chemicals
|
||||||||||||||||||||||||||||||||||||
Large scale production, uses, storage and hazards in handling the following gases: oxygen, nitrogen, hydrogen, acetylene. Manufacture, application, analysis and hazards in handling the following chemicals: hydrochloric acid, nitric acid, sulphuric acid, caustic soda, | ||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:4 |
|||||||||||||||||||||||||||||||||||
Industrial gases and inorganic Chemicals
|
||||||||||||||||||||||||||||||||||||
Large scale production, uses, storage and hazards in handling the following gases: oxygen, nitrogen, hydrogen, acetylene. Manufacture, application, analysis and hazards in handling the following chemicals: hydrochloric acid, nitric acid, sulphuric acid, caustic soda, | ||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:4 |
|||||||||||||||||||||||||||||||||||
Industrial gases and inorganic Chemicals
|
||||||||||||||||||||||||||||||||||||
Large scale production, uses, storage and hazards in handling the following gases: oxygen, nitrogen, hydrogen, acetylene. Manufacture, application, analysis and hazards in handling the following chemicals: hydrochloric acid, nitric acid, sulphuric acid, caustic soda, | ||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:3 |
|||||||||||||||||||||||||||||||||||
Processing of industrial materials
|
||||||||||||||||||||||||||||||||||||
Chemical bonding and properties of materials: Mechanical, Electrical, Magnetic, Optical, Thermal; Oxidation and degradation behavior of industrial materials. | ||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:3 |
|||||||||||||||||||||||||||||||||||
Processing of industrial materials
|
||||||||||||||||||||||||||||||||||||
Chemical bonding and properties of materials: Mechanical, Electrical, Magnetic, Optical, Thermal; Oxidation and degradation behavior of industrial materials. | ||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:3 |
|||||||||||||||||||||||||||||||||||
Processing of industrial materials
|
||||||||||||||||||||||||||||||||||||
Chemical bonding and properties of materials: Mechanical, Electrical, Magnetic, Optical, Thermal; Oxidation and degradation behavior of industrial materials. | ||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:3 |
|||||||||||||||||||||||||||||||||||
Processing of industrial materials
|
||||||||||||||||||||||||||||||||||||
Chemical bonding and properties of materials: Mechanical, Electrical, Magnetic, Optical, Thermal; Oxidation and degradation behavior of industrial materials. | ||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:3 |
|||||||||||||||||||||||||||||||||||
Quality control in chemical industry
|
||||||||||||||||||||||||||||||||||||
Quality Assurance: Elements of quality Assurance, Quality Management System Quality management concepts and principles: ISO 9001:2000 in chemical industries. TQM in Chemical Industry. Six Sigma Approach to Quality: Applying Six Sigma to chemical Industries. Accreditation of QC laboratories. | ||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:3 |
|||||||||||||||||||||||||||||||||||
Quality control in chemical industry
|
||||||||||||||||||||||||||||||||||||
Quality Assurance: Elements of quality Assurance, Quality Management System Quality management concepts and principles: ISO 9001:2000 in chemical industries. TQM in Chemical Industry. Six Sigma Approach to Quality: Applying Six Sigma to chemical Industries. Accreditation of QC laboratories. | ||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:3 |
|||||||||||||||||||||||||||||||||||
Quality control in chemical industry
|
||||||||||||||||||||||||||||||||||||
Quality Assurance: Elements of quality Assurance, Quality Management System Quality management concepts and principles: ISO 9001:2000 in chemical industries. TQM in Chemical Industry. Six Sigma Approach to Quality: Applying Six Sigma to chemical Industries. Accreditation of QC laboratories. | ||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:3 |
|||||||||||||||||||||||||||||||||||
Quality control in chemical industry
|
||||||||||||||||||||||||||||||||||||
Quality Assurance: Elements of quality Assurance, Quality Management System Quality management concepts and principles: ISO 9001:2000 in chemical industries. TQM in Chemical Industry. Six Sigma Approach to Quality: Applying Six Sigma to chemical Industries. Accreditation of QC laboratories. | ||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:3 |
|||||||||||||||||||||||||||||||||||
Ecologically safe products and processes
|
||||||||||||||||||||||||||||||||||||
Mining and metal biotechnology: microbial transformation, accumulation and concentration of metals, metal leaching, extraction; exploitation of microbes in copper and uranium extraction, | ||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:3 |
|||||||||||||||||||||||||||||||||||
Ecologically safe products and processes
|
||||||||||||||||||||||||||||||||||||
Mining and metal biotechnology: microbial transformation, accumulation and concentration of metals, metal leaching, extraction; exploitation of microbes in copper and uranium extraction, | ||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:3 |
|||||||||||||||||||||||||||||||||||
Ecologically safe products and processes
|
||||||||||||||||||||||||||||||||||||
Mining and metal biotechnology: microbial transformation, accumulation and concentration of metals, metal leaching, extraction; exploitation of microbes in copper and uranium extraction, | ||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:3 |
|||||||||||||||||||||||||||||||||||
Ecologically safe products and processes
|
||||||||||||||||||||||||||||||||||||
Mining and metal biotechnology: microbial transformation, accumulation and concentration of metals, metal leaching, extraction; exploitation of microbes in copper and uranium extraction, | ||||||||||||||||||||||||||||||||||||
Unit-6 |
Teaching Hours:3 |
|||||||||||||||||||||||||||||||||||
Environmental policy and agreements
|
||||||||||||||||||||||||||||||||||||
Environmental policy debate; International agreements; Montreal protocol 1987; Kyoto protocol 1997; Convention on Climate Change; carbon credit and carbon trading; clean development mechanism. | ||||||||||||||||||||||||||||||||||||
Unit-6 |
Teaching Hours:3 |
|||||||||||||||||||||||||||||||||||
Environmental policy and agreements
|
||||||||||||||||||||||||||||||||||||
Environmental policy debate; International agreements; Montreal protocol 1987; Kyoto protocol 1997; Convention on Climate Change; carbon credit and carbon trading; clean development mechanism. | ||||||||||||||||||||||||||||||||||||
Unit-6 |
Teaching Hours:3 |
|||||||||||||||||||||||||||||||||||
Environmental policy and agreements
|
||||||||||||||||||||||||||||||||||||
Environmental policy debate; International agreements; Montreal protocol 1987; Kyoto protocol 1997; Convention on Climate Change; carbon credit and carbon trading; clean development mechanism. | ||||||||||||||||||||||||||||||||||||
Unit-6 |
Teaching Hours:3 |
|||||||||||||||||||||||||||||||||||
Environmental policy and agreements
|
||||||||||||||||||||||||||||||||||||
Environmental policy debate; International agreements; Montreal protocol 1987; Kyoto protocol 1997; Convention on Climate Change; carbon credit and carbon trading; clean development mechanism. | ||||||||||||||||||||||||||||||||||||
Unit-7 |
Teaching Hours:3 |
|||||||||||||||||||||||||||||||||||
Chemical toxicology
|
||||||||||||||||||||||||||||||||||||
Toxic chemicals in environment, ecological concept of toxicity, impact of toxic chemicals and biochemical effects of trace metals, pesticides, ozone and some other organic compounds (carcinogens) | ||||||||||||||||||||||||||||||||||||
Unit-7 |
Teaching Hours:3 |
|||||||||||||||||||||||||||||||||||
Chemical toxicology
|
||||||||||||||||||||||||||||||||||||
Toxic chemicals in environment, ecological concept of toxicity, impact of toxic chemicals and biochemical effects of trace metals, pesticides, ozone and some other organic compounds (carcinogens) | ||||||||||||||||||||||||||||||||||||
Unit-7 |
Teaching Hours:3 |
|||||||||||||||||||||||||||||||||||
Chemical toxicology
|
||||||||||||||||||||||||||||||||||||
Toxic chemicals in environment, ecological concept of toxicity, impact of toxic chemicals and biochemical effects of trace metals, pesticides, ozone and some other organic compounds (carcinogens) | ||||||||||||||||||||||||||||||||||||
Unit-7 |
Teaching Hours:3 |
|||||||||||||||||||||||||||||||||||
Chemical toxicology
|
||||||||||||||||||||||||||||||||||||
Toxic chemicals in environment, ecological concept of toxicity, impact of toxic chemicals and biochemical effects of trace metals, pesticides, ozone and some other organic compounds (carcinogens) | ||||||||||||||||||||||||||||||||||||
Unit-8 |
Teaching Hours:4 |
|||||||||||||||||||||||||||||||||||
Corrosion
|
||||||||||||||||||||||||||||||||||||
Corrosion and its economic aspects, Intrinsic and extrinsic forms of corrosion. Corrosion Prevention Techniques: Metallic coatings, organic paints, varnishes, corrosion inhibitors, cathodic and anodic protection. Corrosion in industries with reference to thermal power plants, mining and petroleum industries, prevention of microbial corrosion. | ||||||||||||||||||||||||||||||||||||
Unit-8 |
Teaching Hours:4 |
|||||||||||||||||||||||||||||||||||
Corrosion
|
||||||||||||||||||||||||||||||||||||
Corrosion and its economic aspects, Intrinsic and extrinsic forms of corrosion. Corrosion Prevention Techniques: Metallic coatings, organic paints, varnishes, corrosion inhibitors, cathodic and anodic protection. Corrosion in industries with reference to thermal power plants, mining and petroleum industries, prevention of microbial corrosion. | ||||||||||||||||||||||||||||||||||||
Unit-8 |
Teaching Hours:4 |
|||||||||||||||||||||||||||||||||||
Corrosion
|
||||||||||||||||||||||||||||||||||||
Corrosion and its economic aspects, Intrinsic and extrinsic forms of corrosion. Corrosion Prevention Techniques: Metallic coatings, organic paints, varnishes, corrosion inhibitors, cathodic and anodic protection. Corrosion in industries with reference to thermal power plants, mining and petroleum industries, prevention of microbial corrosion. | ||||||||||||||||||||||||||||||||||||
Unit-8 |
Teaching Hours:4 |
|||||||||||||||||||||||||||||||||||
Corrosion
|
||||||||||||||||||||||||||||||||||||
Corrosion and its economic aspects, Intrinsic and extrinsic forms of corrosion. Corrosion Prevention Techniques: Metallic coatings, organic paints, varnishes, corrosion inhibitors, cathodic and anodic protection. Corrosion in industries with reference to thermal power plants, mining and petroleum industries, prevention of microbial corrosion. | ||||||||||||||||||||||||||||||||||||
Unit-9 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Atmospheric Chemistry and Air pollution
|
||||||||||||||||||||||||||||||||||||
Prelearning topics: Major regions of atmosphere. Composition of the atmosphere, Various ecosystems. Energy flow and eco system stability, Bioelements, cycles of carbon, nitrogen and sulphur. Chemical and photochemical reactions in the atmosphere. Air pollutants: classes, sources, particle size and chemical nature; Atmospheric turbidity. $ Pollution by SO2, CO2, CO, NOx, H2S and other foul smelling gases. $Methods of estimation of CO, NOx, SOx and control procedures. Acid rain, Effects of air pollution on living organisms and vegetation. Urban heat intensity, Adiabatic lapse rate, temperature inversion. | ||||||||||||||||||||||||||||||||||||
Unit-9 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Atmospheric Chemistry and Air pollution
|
||||||||||||||||||||||||||||||||||||
Prelearning topics: Major regions of atmosphere. Composition of the atmosphere, Various ecosystems. Energy flow and eco system stability, Bioelements, cycles of carbon, nitrogen and sulphur. Chemical and photochemical reactions in the atmosphere. Air pollutants: classes, sources, particle size and chemical nature; Atmospheric turbidity. $ Pollution by SO2, CO2, CO, NOx, H2S and other foul smelling gases. $Methods of estimation of CO, NOx, SOx and control procedures. Acid rain, Effects of air pollution on living organisms and vegetation. Urban heat intensity, Adiabatic lapse rate, temperature inversion. | ||||||||||||||||||||||||||||||||||||
Unit-9 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Atmospheric Chemistry and Air pollution
|
||||||||||||||||||||||||||||||||||||
Prelearning topics: Major regions of atmosphere. Composition of the atmosphere, Various ecosystems. Energy flow and eco system stability, Bioelements, cycles of carbon, nitrogen and sulphur. Chemical and photochemical reactions in the atmosphere. Air pollutants: classes, sources, particle size and chemical nature; Atmospheric turbidity. $ Pollution by SO2, CO2, CO, NOx, H2S and other foul smelling gases. $Methods of estimation of CO, NOx, SOx and control procedures. Acid rain, Effects of air pollution on living organisms and vegetation. Urban heat intensity, Adiabatic lapse rate, temperature inversion. | ||||||||||||||||||||||||||||||||||||
Unit-9 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Atmospheric Chemistry and Air pollution
|
||||||||||||||||||||||||||||||||||||
Prelearning topics: Major regions of atmosphere. Composition of the atmosphere, Various ecosystems. Energy flow and eco system stability, Bioelements, cycles of carbon, nitrogen and sulphur. Chemical and photochemical reactions in the atmosphere. Air pollutants: classes, sources, particle size and chemical nature; Atmospheric turbidity. $ Pollution by SO2, CO2, CO, NOx, H2S and other foul smelling gases. $Methods of estimation of CO, NOx, SOx and control procedures. Acid rain, Effects of air pollution on living organisms and vegetation. Urban heat intensity, Adiabatic lapse rate, temperature inversion. | ||||||||||||||||||||||||||||||||||||
Unit-10 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Water pollution
|
||||||||||||||||||||||||||||||||||||
Prelearning topics: Hydrological cycle, water resources, aquatic ecosystems, Sources and nature of water pollutants, Techniques for measuring water pollution. Water quality parameters for domestic water. #Industrial effluents from the following industries and their treatment: electroplating, petroleum and petrochemicals, agro, fertilizer, food industry. #Industrial waste management, incineration of waste. | ||||||||||||||||||||||||||||||||||||
Unit-10 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Water pollution
|
||||||||||||||||||||||||||||||||||||
Prelearning topics: Hydrological cycle, water resources, aquatic ecosystems, Sources and nature of water pollutants, Techniques for measuring water pollution. Water quality parameters for domestic water. #Industrial effluents from the following industries and their treatment: electroplating, petroleum and petrochemicals, agro, fertilizer, food industry. #Industrial waste management, incineration of waste. | ||||||||||||||||||||||||||||||||||||
Unit-10 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Water pollution
|
||||||||||||||||||||||||||||||||||||
Prelearning topics: Hydrological cycle, water resources, aquatic ecosystems, Sources and nature of water pollutants, Techniques for measuring water pollution. Water quality parameters for domestic water. #Industrial effluents from the following industries and their treatment: electroplating, petroleum and petrochemicals, agro, fertilizer, food industry. #Industrial waste management, incineration of waste. | ||||||||||||||||||||||||||||||||||||
Unit-10 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Water pollution
|
||||||||||||||||||||||||||||||||||||
Prelearning topics: Hydrological cycle, water resources, aquatic ecosystems, Sources and nature of water pollutants, Techniques for measuring water pollution. Water quality parameters for domestic water. #Industrial effluents from the following industries and their treatment: electroplating, petroleum and petrochemicals, agro, fertilizer, food industry. #Industrial waste management, incineration of waste. | ||||||||||||||||||||||||||||||||||||
Unit-11 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Energy and environment
|
||||||||||||||||||||||||||||||||||||
Prelearning topics: Sources of energy: Coal, petrol and natural gas. Nuclear Fusion / Fission Renewable energy sources: Solar, geothermal, tidal and hydel, biomass and biofuel. Photovoltaic cells and Hydrogen fuel cell, Nuclear Pollution: Disposal of nuclear waste, nuclear disaster and its management. | ||||||||||||||||||||||||||||||||||||
Unit-11 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Energy and environment
|
||||||||||||||||||||||||||||||||||||
Prelearning topics: Sources of energy: Coal, petrol and natural gas. Nuclear Fusion / Fission Renewable energy sources: Solar, geothermal, tidal and hydel, biomass and biofuel. Photovoltaic cells and Hydrogen fuel cell, Nuclear Pollution: Disposal of nuclear waste, nuclear disaster and its management. | ||||||||||||||||||||||||||||||||||||
Unit-11 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Energy and environment
|
||||||||||||||||||||||||||||||||||||
Prelearning topics: Sources of energy: Coal, petrol and natural gas. Nuclear Fusion / Fission Renewable energy sources: Solar, geothermal, tidal and hydel, biomass and biofuel. Photovoltaic cells and Hydrogen fuel cell, Nuclear Pollution: Disposal of nuclear waste, nuclear disaster and its management. | ||||||||||||||||||||||||||||||||||||
Unit-11 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Energy and environment
|
||||||||||||||||||||||||||||||||||||
Prelearning topics: Sources of energy: Coal, petrol and natural gas. Nuclear Fusion / Fission Renewable energy sources: Solar, geothermal, tidal and hydel, biomass and biofuel. Photovoltaic cells and Hydrogen fuel cell, Nuclear Pollution: Disposal of nuclear waste, nuclear disaster and its management. | ||||||||||||||||||||||||||||||||||||
Unit-12 |
Teaching Hours:3 |
|||||||||||||||||||||||||||||||||||
Biocatalysis
|
||||||||||||||||||||||||||||||||||||
Introduction to biocatalysis: Importance in *Green Chemistry and Chemical Industry. | ||||||||||||||||||||||||||||||||||||
Unit-12 |
Teaching Hours:3 |
|||||||||||||||||||||||||||||||||||
Biocatalysis
|
||||||||||||||||||||||||||||||||||||
Introduction to biocatalysis: Importance in *Green Chemistry and Chemical Industry. | ||||||||||||||||||||||||||||||||||||
Unit-12 |
Teaching Hours:3 |
|||||||||||||||||||||||||||||||||||
Biocatalysis
|
||||||||||||||||||||||||||||||||||||
Introduction to biocatalysis: Importance in *Green Chemistry and Chemical Industry. | ||||||||||||||||||||||||||||||||||||
Unit-12 |
Teaching Hours:3 |
|||||||||||||||||||||||||||||||||||
Biocatalysis
|
||||||||||||||||||||||||||||||||||||
Introduction to biocatalysis: Importance in *Green Chemistry and Chemical Industry. | ||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: [1] E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK (2008). [2] A. K. De, Environmental Chemistry: New Age International Pvt., Ltd, New Delhi (2012). | ||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading [1] R.M. Felder, R.W. Rousseau: Elementary Principles of Chemical Processes, Wiley Publishers, New Delhi (2008). [2] J. A. Kent: Riegel’s Handbook of Industrial Chemistry, CBS Publishers, NewDelhi (2013) [3] S. S. Dara: A Textbook of Engineering Chemistry, S. Chand & Company Ltd. New Delhi (2014). [4] S. M. Khopkar, Environmental Pollution Analysis: Wiley Eastern Ltd, New Delhi (2013). [5] S.E. Manhattan, Environmental Chemistry, CRC Press (2005). [6]G.T. Miller, Environmental Science 11th edition. Brooks/ Cole (2006). [7] A. Mishra, Environmental Studies. Selective and Scientific Books, New Delhi (2005).
| ||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| ||||||||||||||||||||||||||||||||||||
CHE641B - CHEMISTRY VIB-CHEMISTRY OF NATURAL PRODUCTS AND HETEROCYCLIC COMPOUNDS (2022 Batch) | ||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
|||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
|||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
||||||||||||||||||||||||||||||||||||
This course deals with various topics of natural products chemistry and lays the foundation for the study of heterocyclic compounds. |
||||||||||||||||||||||||||||||||||||
Learning Outcome |
||||||||||||||||||||||||||||||||||||
CO1: Predict the structure of terpenoids, alkaloids, steroids, natural drugs, natural coloring agents and heterocyclic compounds. CO2: Utilise the appropriate reactions in structural studies of terpenoids, alkaloids, steroids, natural drugs, natural coloring agents and heterocyclic compounds. CO3: Discuss the chemistry and significance of natural products and heterocyclic compounds. |
Unit-1 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Terpenes
|
||||||||||||||||||||||||||||||||||||
Section A: Natural Products Chemistry Prelearning: Introduction and scope of natural products chemistry. Primary and secondary plant metabolites. Different classes of natural products.
Terpenes: Occurrence, classification, Isoprene rules, cyclization reactions, gem-dialkyl rule. Physico-chemical methods in structural studies (UV, IR, NMR, Mass). Structural elucidation and synthesis of citral, structures and uses of Menthol, Camphor, Limonene and beta-Carotene | ||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Terpenes
|
||||||||||||||||||||||||||||||||||||
Section A: Natural Products Chemistry Prelearning: Introduction and scope of natural products chemistry. Primary and secondary plant metabolites. Different classes of natural products.
Terpenes: Occurrence, classification, Isoprene rules, cyclization reactions, gem-dialkyl rule. Physico-chemical methods in structural studies (UV, IR, NMR, Mass). Structural elucidation and synthesis of citral, structures and uses of Menthol, Camphor, Limonene and beta-Carotene | ||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Terpenes
|
||||||||||||||||||||||||||||||||||||
Section A: Natural Products Chemistry Prelearning: Introduction and scope of natural products chemistry. Primary and secondary plant metabolites. Different classes of natural products.
Terpenes: Occurrence, classification, Isoprene rules, cyclization reactions, gem-dialkyl rule. Physico-chemical methods in structural studies (UV, IR, NMR, Mass). Structural elucidation and synthesis of citral, structures and uses of Menthol, Camphor, Limonene and beta-Carotene | ||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Terpenes
|
||||||||||||||||||||||||||||||||||||
Section A: Natural Products Chemistry Prelearning: Introduction and scope of natural products chemistry. Primary and secondary plant metabolites. Different classes of natural products.
Terpenes: Occurrence, classification, Isoprene rules, cyclization reactions, gem-dialkyl rule. Physico-chemical methods in structural studies (UV, IR, NMR, Mass). Structural elucidation and synthesis of citral, structures and uses of Menthol, Camphor, Limonene and beta-Carotene | ||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:6 |
|||||||||||||||||||||||||||||||||||
Alkaloids
|
||||||||||||||||||||||||||||||||||||
Occurrence, classification and isolation of alkaloids, General characteristics of alkaloids. Structural elucidation of alkaloids; molecular formula, functional group analysis; nature of oxygen atom (alcoholic, hydroxyl, phenolic, methoxy, carboxylic group). Physico-chemical methods (UV, IR, NMR, Mass). Structure and synthesis of nicotine. Medicinal uses of Quinine, Morphine, Strychnine, Cocaine, Atropine, Reserpine and Nicotine. Colour reaction tests (Erdmann, Mayer, Hager reagents). | ||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:6 |
|||||||||||||||||||||||||||||||||||
Alkaloids
|
||||||||||||||||||||||||||||||||||||
Occurrence, classification and isolation of alkaloids, General characteristics of alkaloids. Structural elucidation of alkaloids; molecular formula, functional group analysis; nature of oxygen atom (alcoholic, hydroxyl, phenolic, methoxy, carboxylic group). Physico-chemical methods (UV, IR, NMR, Mass). Structure and synthesis of nicotine. Medicinal uses of Quinine, Morphine, Strychnine, Cocaine, Atropine, Reserpine and Nicotine. Colour reaction tests (Erdmann, Mayer, Hager reagents). | ||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:6 |
|||||||||||||||||||||||||||||||||||
Alkaloids
|
||||||||||||||||||||||||||||||||||||
Occurrence, classification and isolation of alkaloids, General characteristics of alkaloids. Structural elucidation of alkaloids; molecular formula, functional group analysis; nature of oxygen atom (alcoholic, hydroxyl, phenolic, methoxy, carboxylic group). Physico-chemical methods (UV, IR, NMR, Mass). Structure and synthesis of nicotine. Medicinal uses of Quinine, Morphine, Strychnine, Cocaine, Atropine, Reserpine and Nicotine. Colour reaction tests (Erdmann, Mayer, Hager reagents). | ||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:6 |
|||||||||||||||||||||||||||||||||||
Alkaloids
|
||||||||||||||||||||||||||||||||||||
Occurrence, classification and isolation of alkaloids, General characteristics of alkaloids. Structural elucidation of alkaloids; molecular formula, functional group analysis; nature of oxygen atom (alcoholic, hydroxyl, phenolic, methoxy, carboxylic group). Physico-chemical methods (UV, IR, NMR, Mass). Structure and synthesis of nicotine. Medicinal uses of Quinine, Morphine, Strychnine, Cocaine, Atropine, Reserpine and Nicotine. Colour reaction tests (Erdmann, Mayer, Hager reagents). | ||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Naturally occurring Drugs
|
||||||||||||||||||||||||||||||||||||
Drugs-chemotherapy- classification of drugs- Stimulants (caffeine, nicotine, cocaine)-Depressants (alcohol, heroin) – Hallucinogens (magic mushrooms, marijuana)- psychoactive substances (morning glory, mescaline) pain killers (ginger, turmeric, Capsaicin), antimalarials (quinine, artemisinin) anti-cancer (taxol, captothecin, vinblastine, vincristine), antidiabetic (Eugenia jambolana, green tea) immunostimulants (tinosporacordifolia), antibiotic (garlic).
| ||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Naturally occurring Drugs
|
||||||||||||||||||||||||||||||||||||
Drugs-chemotherapy- classification of drugs- Stimulants (caffeine, nicotine, cocaine)-Depressants (alcohol, heroin) – Hallucinogens (magic mushrooms, marijuana)- psychoactive substances (morning glory, mescaline) pain killers (ginger, turmeric, Capsaicin), antimalarials (quinine, artemisinin) anti-cancer (taxol, captothecin, vinblastine, vincristine), antidiabetic (Eugenia jambolana, green tea) immunostimulants (tinosporacordifolia), antibiotic (garlic).
| ||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Naturally occurring Drugs
|
||||||||||||||||||||||||||||||||||||
Drugs-chemotherapy- classification of drugs- Stimulants (caffeine, nicotine, cocaine)-Depressants (alcohol, heroin) – Hallucinogens (magic mushrooms, marijuana)- psychoactive substances (morning glory, mescaline) pain killers (ginger, turmeric, Capsaicin), antimalarials (quinine, artemisinin) anti-cancer (taxol, captothecin, vinblastine, vincristine), antidiabetic (Eugenia jambolana, green tea) immunostimulants (tinosporacordifolia), antibiotic (garlic).
| ||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Naturally occurring Drugs
|
||||||||||||||||||||||||||||||||||||
Drugs-chemotherapy- classification of drugs- Stimulants (caffeine, nicotine, cocaine)-Depressants (alcohol, heroin) – Hallucinogens (magic mushrooms, marijuana)- psychoactive substances (morning glory, mescaline) pain killers (ginger, turmeric, Capsaicin), antimalarials (quinine, artemisinin) anti-cancer (taxol, captothecin, vinblastine, vincristine), antidiabetic (Eugenia jambolana, green tea) immunostimulants (tinosporacordifolia), antibiotic (garlic).
| ||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Steroids
|
||||||||||||||||||||||||||||||||||||
Occurrence. Nomenclature, basic skeleton, Diels hydrocarbon, Stereochemistry of steroids Sex hormones and corticosteroids. Structure of cholesterol and ergosterol (No synthesis). Conversion of cholesterol to progesterone and Testosterone. Liebermann-Burchard reaction. | ||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Steroids
|
||||||||||||||||||||||||||||||||||||
Occurrence. Nomenclature, basic skeleton, Diels hydrocarbon, Stereochemistry of steroids Sex hormones and corticosteroids. Structure of cholesterol and ergosterol (No synthesis). Conversion of cholesterol to progesterone and Testosterone. Liebermann-Burchard reaction. | ||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Steroids
|
||||||||||||||||||||||||||||||||||||
Occurrence. Nomenclature, basic skeleton, Diels hydrocarbon, Stereochemistry of steroids Sex hormones and corticosteroids. Structure of cholesterol and ergosterol (No synthesis). Conversion of cholesterol to progesterone and Testosterone. Liebermann-Burchard reaction. | ||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Steroids
|
||||||||||||||||||||||||||||||||||||
Occurrence. Nomenclature, basic skeleton, Diels hydrocarbon, Stereochemistry of steroids Sex hormones and corticosteroids. Structure of cholesterol and ergosterol (No synthesis). Conversion of cholesterol to progesterone and Testosterone. Liebermann-Burchard reaction. | ||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Natural Pigments
|
||||||||||||||||||||||||||||||||||||
Natural colouring matter, general classification, isolation of anthocyanins (cyanine), flavones (chryosin) and flavanol (Quercetin), Porphyrin; structure, spectral properties and applications (for all). Colour tests for anthocyanins, Flavones, Flavonols (colour with aq. NaOH, Conc.H2SO4 and Mg/HCl).
| ||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Natural Pigments
|
||||||||||||||||||||||||||||||||||||
Natural colouring matter, general classification, isolation of anthocyanins (cyanine), flavones (chryosin) and flavanol (Quercetin), Porphyrin; structure, spectral properties and applications (for all). Colour tests for anthocyanins, Flavones, Flavonols (colour with aq. NaOH, Conc.H2SO4 and Mg/HCl).
| ||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Natural Pigments
|
||||||||||||||||||||||||||||||||||||
Natural colouring matter, general classification, isolation of anthocyanins (cyanine), flavones (chryosin) and flavanol (Quercetin), Porphyrin; structure, spectral properties and applications (for all). Colour tests for anthocyanins, Flavones, Flavonols (colour with aq. NaOH, Conc.H2SO4 and Mg/HCl).
| ||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Natural Pigments
|
||||||||||||||||||||||||||||||||||||
Natural colouring matter, general classification, isolation of anthocyanins (cyanine), flavones (chryosin) and flavanol (Quercetin), Porphyrin; structure, spectral properties and applications (for all). Colour tests for anthocyanins, Flavones, Flavonols (colour with aq. NaOH, Conc.H2SO4 and Mg/HCl).
| ||||||||||||||||||||||||||||||||||||
Unit-6 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Introduction to heterocyclic chemistry
|
||||||||||||||||||||||||||||||||||||
Section B: Heterocyclic compounds Prelearning: General introduction of heterocyclic compounds and their importance. Introduction to heterocyclic chemistry: Introduction, classification, nomenclature (monocyclic and polycyclic), importance of heterocyclic compounds. | ||||||||||||||||||||||||||||||||||||
Unit-6 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Introduction to heterocyclic chemistry
|
||||||||||||||||||||||||||||||||||||
Section B: Heterocyclic compounds Prelearning: General introduction of heterocyclic compounds and their importance. Introduction to heterocyclic chemistry: Introduction, classification, nomenclature (monocyclic and polycyclic), importance of heterocyclic compounds. | ||||||||||||||||||||||||||||||||||||
Unit-6 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Introduction to heterocyclic chemistry
|
||||||||||||||||||||||||||||||||||||
Section B: Heterocyclic compounds Prelearning: General introduction of heterocyclic compounds and their importance. Introduction to heterocyclic chemistry: Introduction, classification, nomenclature (monocyclic and polycyclic), importance of heterocyclic compounds. | ||||||||||||||||||||||||||||||||||||
Unit-6 |
Teaching Hours:5 |
|||||||||||||||||||||||||||||||||||
Introduction to heterocyclic chemistry
|
||||||||||||||||||||||||||||||||||||
Section B: Heterocyclic compounds Prelearning: General introduction of heterocyclic compounds and their importance. Introduction to heterocyclic chemistry: Introduction, classification, nomenclature (monocyclic and polycyclic), importance of heterocyclic compounds. | ||||||||||||||||||||||||||||||||||||
Unit-7 |
Teaching Hours:4 |
|||||||||||||||||||||||||||||||||||
Non-aromatic heterocyclic compounds
|
||||||||||||||||||||||||||||||||||||
Introduction to three and four membered heterocyclic compounds. Synthesis, properties and uses of Azirines, Aziridines, Oxiranes, Thiiranes, Azetidines, Oxetanes and Thietanes. | ||||||||||||||||||||||||||||||||||||
Unit-7 |
Teaching Hours:4 |
|||||||||||||||||||||||||||||||||||
Non-aromatic heterocyclic compounds
|
||||||||||||||||||||||||||||||||||||
Introduction to three and four membered heterocyclic compounds. Synthesis, properties and uses of Azirines, Aziridines, Oxiranes, Thiiranes, Azetidines, Oxetanes and Thietanes. | ||||||||||||||||||||||||||||||||||||
Unit-7 |
Teaching Hours:4 |
|||||||||||||||||||||||||||||||||||
Non-aromatic heterocyclic compounds
|
||||||||||||||||||||||||||||||||||||
Introduction to three and four membered heterocyclic compounds. Synthesis, properties and uses of Azirines, Aziridines, Oxiranes, Thiiranes, Azetidines, Oxetanes and Thietanes. | ||||||||||||||||||||||||||||||||||||
Unit-7 |
Teaching Hours:4 |
|||||||||||||||||||||||||||||||||||
Non-aromatic heterocyclic compounds
|
||||||||||||||||||||||||||||||||||||
Introduction to three and four membered heterocyclic compounds. Synthesis, properties and uses of Azirines, Aziridines, Oxiranes, Thiiranes, Azetidines, Oxetanes and Thietanes. | ||||||||||||||||||||||||||||||||||||
Unit-8 |
Teaching Hours:10 |
|||||||||||||||||||||||||||||||||||
Aromatic heterocyclic compounds
|
||||||||||||||||||||||||||||||||||||
5-membered heterocycles with two hetero atoms (pyrazole, imidazole, oxazole, thiazole): Structure, properties, synthesis (1 method each) and reactions. Benzo-fused heterocycles: Structure, reactivity, synthesis (1 method each) and reactions of benzofuran, benzothiophene, benzoxazoles and benzimidazole, quinoline, isoquinoline and indolee. | ||||||||||||||||||||||||||||||||||||
Unit-8 |
Teaching Hours:10 |
|||||||||||||||||||||||||||||||||||
Aromatic heterocyclic compounds
|
||||||||||||||||||||||||||||||||||||
5-membered heterocycles with two hetero atoms (pyrazole, imidazole, oxazole, thiazole): Structure, properties, synthesis (1 method each) and reactions. Benzo-fused heterocycles: Structure, reactivity, synthesis (1 method each) and reactions of benzofuran, benzothiophene, benzoxazoles and benzimidazole, quinoline, isoquinoline and indolee. | ||||||||||||||||||||||||||||||||||||
Unit-8 |
Teaching Hours:10 |
|||||||||||||||||||||||||||||||||||
Aromatic heterocyclic compounds
|
||||||||||||||||||||||||||||||||||||
5-membered heterocycles with two hetero atoms (pyrazole, imidazole, oxazole, thiazole): Structure, properties, synthesis (1 method each) and reactions. Benzo-fused heterocycles: Structure, reactivity, synthesis (1 method each) and reactions of benzofuran, benzothiophene, benzoxazoles and benzimidazole, quinoline, isoquinoline and indolee. | ||||||||||||||||||||||||||||||||||||
Unit-8 |
Teaching Hours:10 |
|||||||||||||||||||||||||||||||||||
Aromatic heterocyclic compounds
|
||||||||||||||||||||||||||||||||||||
5-membered heterocycles with two hetero atoms (pyrazole, imidazole, oxazole, thiazole): Structure, properties, synthesis (1 method each) and reactions. Benzo-fused heterocycles: Structure, reactivity, synthesis (1 method each) and reactions of benzofuran, benzothiophene, benzoxazoles and benzimidazole, quinoline, isoquinoline and indolee. | ||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: [1] Ashutosh, K., Chemistry of natural products Vol. I, CBS Publications & Distributors 1st Edition 2010. [2] Ashutosh, K., Chemistry of natural products Vol. II, CBS Publications & Distributors 1st Edition 2012. [3] Bhat, S., Nagasampagi B., Sivakumar M., Chemistry of natural productsNarosa Publishing House New Delhi 2005. [4] Ahluwalia, V. K. Heterocyclic Chemistry, Narosa Publishing House New Delhi, 2016. | ||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading [1] Katritzky, A. R. Handbook of Heterocyclic Chemistry, 3rd addition, 2010. [2] Agrawal, O. P. Chemistry of Natural products vol I & II, 41st addition, 2014. | ||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| ||||||||||||||||||||||||||||||||||||
CHE651 - CHEMISTRY PRACTICALS VI-MOLECULES OF LIFE (2022 Batch) | ||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
|||||||||||||||||||||||||||||||||||
Max Marks:50 |
Credits:2 |
|||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
||||||||||||||||||||||||||||||||||||
This course introduces different biochemical techniques for the determination and analysis of various biomolecules like carbohydrates, amino acids etc.It also emphasizes the importance of organized and systematic approach in carrying out experiments. |
||||||||||||||||||||||||||||||||||||
Learning Outcome |
||||||||||||||||||||||||||||||||||||
CO1: Understand the action of salivary amylase of starch. CO2: Analyze amino acids by paper chromatography. CO3: Estimate absorbance of biomolecules by colorimetric method. CO4: Determine iodine value and saponification value of oils. |
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||||
Chemistry Practicals VI - Molecules of Life
|
|||||||||||||||||||||||||||||||
1.Separation of amino acids by paper chromatography. 2.To determine the concentration of glycine solution by formylation method. 3.Estimation of creatinine in urine by Jaffe’s method. 4.Estimation of inorganic phosphate in food samples by Fiske –Subbarow method. 5.Estimation of total reducing sugars in honey by DNS (Dinitrosalicyclic acid) method. 6.Estimation of protein by biuret method and Lowry’s method. 7.Study of titration curve of glycine. 8.Determination of the concentration of glycine solution by formylation method. 9.Action of salivary amylase on starch. 10.Effect of temperature on the action of salivary amylase on starch. 11.To determine the saponification value of an oil/fat. 12.To determine the iodine value of an oil/fat. 13.Differentiate between a reducing/ non reducing sugar. 14.Extraction of DNA from onion/cauliflower.
| |||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||||
Chemistry Practicals VI - Molecules of Life
|
|||||||||||||||||||||||||||||||
1.Separation of amino acids by paper chromatography. 2.To determine the concentration of glycine solution by formylation method. 3.Estimation of creatinine in urine by Jaffe’s method. 4.Estimation of inorganic phosphate in food samples by Fiske –Subbarow method. 5.Estimation of total reducing sugars in honey by DNS (Dinitrosalicyclic acid) method. 6.Estimation of protein by biuret method and Lowry’s method. 7.Study of titration curve of glycine. 8.Determination of the concentration of glycine solution by formylation method. 9.Action of salivary amylase on starch. 10.Effect of temperature on the action of salivary amylase on starch. 11.To determine the saponification value of an oil/fat. 12.To determine the iodine value of an oil/fat. 13.Differentiate between a reducing/ non reducing sugar. 14.Extraction of DNA from onion/cauliflower.
| |||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||||
Chemistry Practicals VI - Molecules of Life
|
|||||||||||||||||||||||||||||||
1.Separation of amino acids by paper chromatography. 2.To determine the concentration of glycine solution by formylation method. 3.Estimation of creatinine in urine by Jaffe’s method. 4.Estimation of inorganic phosphate in food samples by Fiske –Subbarow method. 5.Estimation of total reducing sugars in honey by DNS (Dinitrosalicyclic acid) method. 6.Estimation of protein by biuret method and Lowry’s method. 7.Study of titration curve of glycine. 8.Determination of the concentration of glycine solution by formylation method. 9.Action of salivary amylase on starch. 10.Effect of temperature on the action of salivary amylase on starch. 11.To determine the saponification value of an oil/fat. 12.To determine the iodine value of an oil/fat. 13.Differentiate between a reducing/ non reducing sugar. 14.Extraction of DNA from onion/cauliflower.
| |||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||||
Chemistry Practicals VI - Molecules of Life
|
|||||||||||||||||||||||||||||||
1.Separation of amino acids by paper chromatography. 2.To determine the concentration of glycine solution by formylation method. 3.Estimation of creatinine in urine by Jaffe’s method. 4.Estimation of inorganic phosphate in food samples by Fiske –Subbarow method. 5.Estimation of total reducing sugars in honey by DNS (Dinitrosalicyclic acid) method. 6.Estimation of protein by biuret method and Lowry’s method. 7.Study of titration curve of glycine. 8.Determination of the concentration of glycine solution by formylation method. 9.Action of salivary amylase on starch. 10.Effect of temperature on the action of salivary amylase on starch. 11.To determine the saponification value of an oil/fat. 12.To determine the iodine value of an oil/fat. 13.Differentiate between a reducing/ non reducing sugar. 14.Extraction of DNA from onion/cauliflower.
| |||||||||||||||||||||||||||||||
Text Books And Reference Books: [1] David T Plummer, An Introduction to Practical Biochemistry, 1st edition 1987, Tata McGraw-Hill publishing company reprint 2008. [2] B.S. Furniss, A.J. Hannaford, V. Rogers, P.W.G. Smith and A.R.Tatchell, Vogel’s Textbook of Practical Organic Chemistry, 5th edition 1989 ELBS. | |||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading [1] J. Jayaraman, Laboratory Manual in Biochemistry, Wiley Eastern Ltd., 2011. [2] V. K. Ahluwalia and R. Aggarwal, Comprehensive Practical Organic Chemistry, 1st edition 2001, Universities Press. | |||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||
CHE651A - CHEMISTRY PRACTICALS VIA-INDUSTRIAL MATERIALS AND ENVIRONMENT (2022 Batch) | |||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||||||||||||||||||||
Max Marks:50 |
Credits:2 |
||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||
Course Description: This practical
|
|||||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||||
CO 1: Estimate phosphoric acid in superphosphate fertilizer. CO 2: Determine composition of dolomite. CO 3: Analyze different types of alloys. |
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||||||||||||||||
Chemistry Practicals VIA - Industrial materials and environment
|
|||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||||||||||||||||
Chemistry Practicals VIA - Industrial materials and environment
|
|||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||||||||||||||||
Chemistry Practicals VIA - Industrial materials and environment
|
|||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||||||||||||||||
Chemistry Practicals VIA - Industrial materials and environment
|
|||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: [1] E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK (2008). [2] A. K. De, Environmental Chemistry: New Age International Pvt., Ltd, New Delhi (2012).
| |||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading [1] R.M. Felder, R.W. Rousseau: Elementary Principles of Chemical Processes, Wiley Publishers, New Delhi. J. A. Kent: Riegel’s Handbook of Industrial Chemistry, CBS Publishers, New Delhi (2008). [2] S. S. Dara: A Textbook of Engineering Chemistry, S. Chand & Company Ltd. New Delhi (2014). [3] S. M. Khopkar, Environmental Pollution Analysis: Wiley Eastern Ltd, New Delhi (2013). | |||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||||||||||||||
CHE651B - CHEMISTRY PRACTICALS VIB-CHEMISTRY OF NATURAL PRODUCTS AND ORGANIC ANALYSIS (2022 Batch) | |||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||||||||||||||||||||||||||||||||
Max Marks:50 |
Credits:2 |
||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||||
This course deals with the extraction and estimation of natural products chemistry and lays the foundation for the analysis of organic compounds. |
|||||||||||||||||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||||||||||||||||
CO1: Explain the theory of extraction of Natural products. CO2: Estimate Natural products and Nucleic acids by different methods. |
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||||
Chemistry Practicals VIB - Natural Products and Organic Analysis
|
|||||||||||||||||||||||||||||||
1. Section A: Natural Products Chemistry#
1. Extraction of natural products by Soxhlet extraction method. 2. Standardization of green tea extract. 3. Isolation of alkaloids. 4. Isolation of natural products by column chromatography 5. Isolation of natural products by preparative TLC. 6. Isolation of Caffeine. 7. Estimation of Caffeine by titration method. 8. Estimation of beta carotene by spectroscopic method. 9. Estimation of polyphenols using Folin–Ciocalteu reagent) 10. Estimation of iron in mustard seed / maize. 11. Estimation of DNA using Diphenyl amine method. 12. Estimation of RNA by Orcinol method.
Section B: Organic compound analysis: Determination of melting and boiling points. Detection of extra elements (N, S, Cl, Br, I) in organic compounds (containing up to two extra elements). Systematic Qualitative Organic Analysis of Organic Compounds possessing monofunctional groups (-COOH, phenolic, aldehydic, ketonic, amide, nitro, amines) Preparation of one derivative. | |||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||||
Chemistry Practicals VIB - Natural Products and Organic Analysis
|
|||||||||||||||||||||||||||||||
1. Section A: Natural Products Chemistry#
1. Extraction of natural products by Soxhlet extraction method. 2. Standardization of green tea extract. 3. Isolation of alkaloids. 4. Isolation of natural products by column chromatography 5. Isolation of natural products by preparative TLC. 6. Isolation of Caffeine. 7. Estimation of Caffeine by titration method. 8. Estimation of beta carotene by spectroscopic method. 9. Estimation of polyphenols using Folin–Ciocalteu reagent) 10. Estimation of iron in mustard seed / maize. 11. Estimation of DNA using Diphenyl amine method. 12. Estimation of RNA by Orcinol method.
Section B: Organic compound analysis: Determination of melting and boiling points. Detection of extra elements (N, S, Cl, Br, I) in organic compounds (containing up to two extra elements). Systematic Qualitative Organic Analysis of Organic Compounds possessing monofunctional groups (-COOH, phenolic, aldehydic, ketonic, amide, nitro, amines) Preparation of one derivative. | |||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||||
Chemistry Practicals VIB - Natural Products and Organic Analysis
|
|||||||||||||||||||||||||||||||
1. Section A: Natural Products Chemistry#
1. Extraction of natural products by Soxhlet extraction method. 2. Standardization of green tea extract. 3. Isolation of alkaloids. 4. Isolation of natural products by column chromatography 5. Isolation of natural products by preparative TLC. 6. Isolation of Caffeine. 7. Estimation of Caffeine by titration method. 8. Estimation of beta carotene by spectroscopic method. 9. Estimation of polyphenols using Folin–Ciocalteu reagent) 10. Estimation of iron in mustard seed / maize. 11. Estimation of DNA using Diphenyl amine method. 12. Estimation of RNA by Orcinol method.
Section B: Organic compound analysis: Determination of melting and boiling points. Detection of extra elements (N, S, Cl, Br, I) in organic compounds (containing up to two extra elements). Systematic Qualitative Organic Analysis of Organic Compounds possessing monofunctional groups (-COOH, phenolic, aldehydic, ketonic, amide, nitro, amines) Preparation of one derivative. | |||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||||
Chemistry Practicals VIB - Natural Products and Organic Analysis
|
|||||||||||||||||||||||||||||||
1. Section A: Natural Products Chemistry#
1. Extraction of natural products by Soxhlet extraction method. 2. Standardization of green tea extract. 3. Isolation of alkaloids. 4. Isolation of natural products by column chromatography 5. Isolation of natural products by preparative TLC. 6. Isolation of Caffeine. 7. Estimation of Caffeine by titration method. 8. Estimation of beta carotene by spectroscopic method. 9. Estimation of polyphenols using Folin–Ciocalteu reagent) 10. Estimation of iron in mustard seed / maize. 11. Estimation of DNA using Diphenyl amine method. 12. Estimation of RNA by Orcinol method.
Section B: Organic compound analysis: Determination of melting and boiling points. Detection of extra elements (N, S, Cl, Br, I) in organic compounds (containing up to two extra elements). Systematic Qualitative Organic Analysis of Organic Compounds possessing monofunctional groups (-COOH, phenolic, aldehydic, ketonic, amide, nitro, amines) Preparation of one derivative. | |||||||||||||||||||||||||||||||
Text Books And Reference Books: [1] Siddiqui, A., Siddiqui, S. Natural Products Chemistry Practical Manual: For Science and Pharmacy Courses, CBS Publisher, 2008.
[2] Pavia, I. D. L., Lampman, G. M. and Kriz, G. S. Introduction to Organic Laboratory Techniques, W.B. Saunders Company, 1976.
| |||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading [1] Svehla, G. Vogel’s Qualitative Inorganic Analysis, Pearson Education, 2012 | |||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||
CHE681 - DISSERTATION IN CHEMISTRY (2022 Batch) | |||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:105 |
No of Lecture Hours/Week:7 |
||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:5 |
||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||
This project-based course is intended to provide the students an opportunity to choose and learn more about any topic based on their interest, from Chemistry. This will act as a springboard for pursuing research. This will also enhance teamwork, planning, time management and effective use of resources. |
|||||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||||
CO1: Choose various topics on which they can conduct innovative experiments. CO2: Demonstrate teamwork, time management and initiative.
|
Unit-1 |
Teaching Hours:105 |
Course Content
|
|
The basics of scientific writing, experimental design, project reporting and presentation. Aims and means of assessing the feasibility of projects. Techniques in data collection, collation and analysis. Investigation and written report on an approved topic.
Evaluation parameters for the dissertation Review of literature Novelty of the research method Scientific quality Results and discussion Progress presentation
Dissertation with poster followed by viva | |
Unit-1 |
Teaching Hours:105 |
Course Content
|
|
The basics of scientific writing, experimental design, project reporting and presentation. Aims and means of assessing the feasibility of projects. Techniques in data collection, collation and analysis. Investigation and written report on an approved topic.
Evaluation parameters for the dissertation Review of literature Novelty of the research method Scientific quality Results and discussion Progress presentation
Dissertation with poster followed by viva | |
Unit-1 |
Teaching Hours:105 |
Course Content
|
|
The basics of scientific writing, experimental design, project reporting and presentation. Aims and means of assessing the feasibility of projects. Techniques in data collection, collation and analysis. Investigation and written report on an approved topic.
Evaluation parameters for the dissertation Review of literature Novelty of the research method Scientific quality Results and discussion Progress presentation
Dissertation with poster followed by viva | |
Unit-1 |
Teaching Hours:105 |
Course Content
|
|
The basics of scientific writing, experimental design, project reporting and presentation. Aims and means of assessing the feasibility of projects. Techniques in data collection, collation and analysis. Investigation and written report on an approved topic.
Evaluation parameters for the dissertation Review of literature Novelty of the research method Scientific quality Results and discussion Progress presentation
Dissertation with poster followed by viva | |
Unit-1 |
Teaching Hours:105 |
Course Content
|
|
The basics of scientific writing, experimental design, project reporting and presentation. Aims and means of assessing the feasibility of projects. Techniques in data collection, collation and analysis. Investigation and written report on an approved topic.
Evaluation parameters for the dissertation Review of literature Novelty of the research method Scientific quality Results and discussion Progress presentation
Dissertation with poster followed by viva | |
Text Books And Reference Books: National and International journals in chemistry | |
Essential Reading / Recommended Reading National and International journals in chemistry | |
Evaluation Pattern CIA 1: continuous assessment and Proposal presentation 30 marks CIA 2: continuous assessment and Progress presentation 30 marks CIA 3: continuous assessment and Progress presentation 30 marks Attendance: 10 marks ESE: Dissertation 20 marks Poster 5 marks Presentation followed by Viva 25 marks | |
MAT631 - COMPLEX ANALYSIS (2022 Batch) | |
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
Max Marks:100 |
Credits:3 |
Course Objectives/Course Description |
|
Course description: This course enables the students to understand the basic theory and principles of complex analysis. COBJ1. understand the theory and geometry of complex numbers. COBJ2. evaluate derivatives and integrals of functions of complex variables. COBJ3. examine the transformation of functions of complex variables. COBJ4. obtain the power series expansion of a complex valued function. |
|
Learning Outcome |
|
CO1: On successful completion of the course, the students should be able to understand the concepts of limit, continuity, differentiability of complex functions. CO2: On successful completion of the course, the students should be able to evaluate the integrals of complex functions using Cauchy's Integral Theorem/Formula and related results. CO3: On successful completion of the course, the students should be able to examine various types of transformation of functions of complex variables. CO4: On successful completion of the course, the students should be able to demonstrate the expansions of complex functions as Taylor, Power and Laurent Series, Classify singularities and poles. CO5: On successful completion of the course, the students should be able to apply the concepts of complex analysis to analyze and address real world problems. |
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Analytic Functions
|
|||||||||||||||||||||||||||||
Properties of complex numbers, regions in the complex plane, functions of complex variable, limits, limits involving the point at infinity, continuity and differentiability of functions of complex variable. Analytic functions, necessary and sufficient conditions for a function to be analytic. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Analytic Functions
|
|||||||||||||||||||||||||||||
Properties of complex numbers, regions in the complex plane, functions of complex variable, limits, limits involving the point at infinity, continuity and differentiability of functions of complex variable. Analytic functions, necessary and sufficient conditions for a function to be analytic. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Analytic Functions
|
|||||||||||||||||||||||||||||
Properties of complex numbers, regions in the complex plane, functions of complex variable, limits, limits involving the point at infinity, continuity and differentiability of functions of complex variable. Analytic functions, necessary and sufficient conditions for a function to be analytic. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Analytic Functions
|
|||||||||||||||||||||||||||||
Properties of complex numbers, regions in the complex plane, functions of complex variable, limits, limits involving the point at infinity, continuity and differentiability of functions of complex variable. Analytic functions, necessary and sufficient conditions for a function to be analytic. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Analytic Functions
|
|||||||||||||||||||||||||||||
Properties of complex numbers, regions in the complex plane, functions of complex variable, limits, limits involving the point at infinity, continuity and differentiability of functions of complex variable. Analytic functions, necessary and sufficient conditions for a function to be analytic. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Analytic Functions
|
|||||||||||||||||||||||||||||
Properties of complex numbers, regions in the complex plane, functions of complex variable, limits, limits involving the point at infinity, continuity and differentiability of functions of complex variable. Analytic functions, necessary and sufficient conditions for a function to be analytic. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Analytic Functions
|
|||||||||||||||||||||||||||||
Properties of complex numbers, regions in the complex plane, functions of complex variable, limits, limits involving the point at infinity, continuity and differentiability of functions of complex variable. Analytic functions, necessary and sufficient conditions for a function to be analytic. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Complex Integration and Conformal Mapping
|
|||||||||||||||||||||||||||||
Definite integrals of functions, contour integrals and its examples, Cauchy’s integral theorem, Cauchy integral formula, Liouville’s theorem and the fundamental theorem of algebra, elementary transformations, conformal mappings, bilinear transformations. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Complex Integration and Conformal Mapping
|
|||||||||||||||||||||||||||||
Definite integrals of functions, contour integrals and its examples, Cauchy’s integral theorem, Cauchy integral formula, Liouville’s theorem and the fundamental theorem of algebra, elementary transformations, conformal mappings, bilinear transformations. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Complex Integration and Conformal Mapping
|
|||||||||||||||||||||||||||||
Definite integrals of functions, contour integrals and its examples, Cauchy’s integral theorem, Cauchy integral formula, Liouville’s theorem and the fundamental theorem of algebra, elementary transformations, conformal mappings, bilinear transformations. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Complex Integration and Conformal Mapping
|
|||||||||||||||||||||||||||||
Definite integrals of functions, contour integrals and its examples, Cauchy’s integral theorem, Cauchy integral formula, Liouville’s theorem and the fundamental theorem of algebra, elementary transformations, conformal mappings, bilinear transformations. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Complex Integration and Conformal Mapping
|
|||||||||||||||||||||||||||||
Definite integrals of functions, contour integrals and its examples, Cauchy’s integral theorem, Cauchy integral formula, Liouville’s theorem and the fundamental theorem of algebra, elementary transformations, conformal mappings, bilinear transformations. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Complex Integration and Conformal Mapping
|
|||||||||||||||||||||||||||||
Definite integrals of functions, contour integrals and its examples, Cauchy’s integral theorem, Cauchy integral formula, Liouville’s theorem and the fundamental theorem of algebra, elementary transformations, conformal mappings, bilinear transformations. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Complex Integration and Conformal Mapping
|
|||||||||||||||||||||||||||||
Definite integrals of functions, contour integrals and its examples, Cauchy’s integral theorem, Cauchy integral formula, Liouville’s theorem and the fundamental theorem of algebra, elementary transformations, conformal mappings, bilinear transformations. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Power Series and Singularities
|
|||||||||||||||||||||||||||||
Convergence of sequences and series, Taylor series and its examples, Laurent series and its examples, absolute and uniform convergence of power series, zeros and poles. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Power Series and Singularities
|
|||||||||||||||||||||||||||||
Convergence of sequences and series, Taylor series and its examples, Laurent series and its examples, absolute and uniform convergence of power series, zeros and poles. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Power Series and Singularities
|
|||||||||||||||||||||||||||||
Convergence of sequences and series, Taylor series and its examples, Laurent series and its examples, absolute and uniform convergence of power series, zeros and poles. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Power Series and Singularities
|
|||||||||||||||||||||||||||||
Convergence of sequences and series, Taylor series and its examples, Laurent series and its examples, absolute and uniform convergence of power series, zeros and poles. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Power Series and Singularities
|
|||||||||||||||||||||||||||||
Convergence of sequences and series, Taylor series and its examples, Laurent series and its examples, absolute and uniform convergence of power series, zeros and poles. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Power Series and Singularities
|
|||||||||||||||||||||||||||||
Convergence of sequences and series, Taylor series and its examples, Laurent series and its examples, absolute and uniform convergence of power series, zeros and poles. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Power Series and Singularities
|
|||||||||||||||||||||||||||||
Convergence of sequences and series, Taylor series and its examples, Laurent series and its examples, absolute and uniform convergence of power series, zeros and poles. | |||||||||||||||||||||||||||||
Text Books And Reference Books: Dennis G. Zill and Patrick D. Shanahan, A first course in Complex Analysis with Applications, 2nd Ed, Jones & Barlett Publishers, 2011. | |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading
| |||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||
MAT641A - MECHANICS (2022 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
Course description: This course aims at introducing the basic concepts in statistics as well as dynamics of particles and rigid bodies; develop problem solving skills in mechanics through various applications. Course objectives: This course will help the learner to COBJ1. Gain familiarity with the concepts of force, triangular and parallelogram laws and conditions of equilibrium of forces. COBJ2. Analyse and interpret the Lamis Lemma and the resultant of more than one force. COBJ3. examine dynamical aspect of particles and rigid bodies. COBJ4. illustrate the concepts of simple harmonic motion and projectiles
|
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO1: On successful completion of the course, the students should be able to compute resultant and direction of forces and examine the equilibrium of a force. CO2: On successful completion of the course, the students should be able to apply Lamis's Theorem and Varignon's Theorem in solving problems. CO3: On successful completion of the course, the students should be able to analyse the motion of a particle on a smooth surface. CO4: On successful completion of the course, the students should be able to discuss the motion of a particles subjected to Simple Harmonic Motion and fundamental concepts Projectiles. |
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Forces acting on particle / rigid body
|
|||||||||||||||||||||||||||||
Introduction and general principles, force vectors, moments, couple-equilibrium of a particle - coplanar forces acting on a rigid body, problems of equilibrium under forces | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Forces acting on particle / rigid body
|
|||||||||||||||||||||||||||||
Introduction and general principles, force vectors, moments, couple-equilibrium of a particle - coplanar forces acting on a rigid body, problems of equilibrium under forces | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Forces acting on particle / rigid body
|
|||||||||||||||||||||||||||||
Introduction and general principles, force vectors, moments, couple-equilibrium of a particle - coplanar forces acting on a rigid body, problems of equilibrium under forces | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Forces acting on particle / rigid body
|
|||||||||||||||||||||||||||||
Introduction and general principles, force vectors, moments, couple-equilibrium of a particle - coplanar forces acting on a rigid body, problems of equilibrium under forces | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Forces acting on particle / rigid body
|
|||||||||||||||||||||||||||||
Introduction and general principles, force vectors, moments, couple-equilibrium of a particle - coplanar forces acting on a rigid body, problems of equilibrium under forces | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:20 |
||||||||||||||||||||||||||||
Dynamics of a particle in 2D
|
|||||||||||||||||||||||||||||
Velocities and accelerations along radial and transverse directions and along tangential and normal directions; relation between angular and linear vectors, dynamics on smooth and rough plane curves. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:20 |
||||||||||||||||||||||||||||
Dynamics of a particle in 2D
|
|||||||||||||||||||||||||||||
Velocities and accelerations along radial and transverse directions and along tangential and normal directions; relation between angular and linear vectors, dynamics on smooth and rough plane curves. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:20 |
||||||||||||||||||||||||||||
Dynamics of a particle in 2D
|
|||||||||||||||||||||||||||||
Velocities and accelerations along radial and transverse directions and along tangential and normal directions; relation between angular and linear vectors, dynamics on smooth and rough plane curves. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:20 |
||||||||||||||||||||||||||||
Dynamics of a particle in 2D
|
|||||||||||||||||||||||||||||
Velocities and accelerations along radial and transverse directions and along tangential and normal directions; relation between angular and linear vectors, dynamics on smooth and rough plane curves. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:20 |
||||||||||||||||||||||||||||
Dynamics of a particle in 2D
|
|||||||||||||||||||||||||||||
Velocities and accelerations along radial and transverse directions and along tangential and normal directions; relation between angular and linear vectors, dynamics on smooth and rough plane curves. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:10 |
||||||||||||||||||||||||||||
Kinetics of particle and Projectile Motion
|
|||||||||||||||||||||||||||||
Simple harmonic motion, Newton’s laws of motion, projectiles. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:10 |
||||||||||||||||||||||||||||
Kinetics of particle and Projectile Motion
|
|||||||||||||||||||||||||||||
Simple harmonic motion, Newton’s laws of motion, projectiles. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:10 |
||||||||||||||||||||||||||||
Kinetics of particle and Projectile Motion
|
|||||||||||||||||||||||||||||
Simple harmonic motion, Newton’s laws of motion, projectiles. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:10 |
||||||||||||||||||||||||||||
Kinetics of particle and Projectile Motion
|
|||||||||||||||||||||||||||||
Simple harmonic motion, Newton’s laws of motion, projectiles. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:10 |
||||||||||||||||||||||||||||
Kinetics of particle and Projectile Motion
|
|||||||||||||||||||||||||||||
Simple harmonic motion, Newton’s laws of motion, projectiles. | |||||||||||||||||||||||||||||
Text Books And Reference Books:
| |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading
| |||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||
MAT641B - NUMERICAL METHODS (2022 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
Course description: To explore the complex world problems physicists, engineers, financiers and mathematicians require certain methods. These practical problems can rarely be solved analytically. Their solutions can only be approximated through numerical methods. This course deals with the theory and application of numerical approximation techniques.
Course objectives: This course will help the learner COBJ1. To learn about error analysis, solution of nonlinear equations, finite differences, interpolation, numerical integration and differentiation, numerical solution of differential equations, and matrix computation. COBJ2. It also emphasis the development of numerical algorithms to provide solutions to common problems formulated in science and engineering. |
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO1.: On successful completion of the course, the students should be able to understand floating point numbers and the role of errors and its analysis in numerical methods. CO2.: On successful completion of the course, the students should be able to derive numerical methods for various mathematical operations and tasks, such as interpolation, differentiation, integration, the solution of linear and nonlinear equations, and the solution of differential equations. CO3.: On successful completion of the course, the students should be able to apply numerical methods to obtain approximate solutions to mathematical problems. CO4.: On successful completion of the course, the students should be able to understand the accuracy, consistency, stability and convergence of numerical methods |
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Error analysis, Nonlinear equations, and Solution of a system of linear Equations
|
|||||||||||||||||||||||||||||
Errors and their analysis, Floating point representation of numbers, solution of algebraic and Transcendental Equations: Bisection method, fixed point Iteration method, the method of False Position, Newton Raphson method and Mullers method. Solution of linear systems, matrix inversion method, Gauss elimination method, Gauss-Seidel and Gauss-Jacobi iterative methods, modification of the Gauss method to compute the inverse, LU decomposition method. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Error analysis, Nonlinear equations, and Solution of a system of linear Equations
|
|||||||||||||||||||||||||||||
Errors and their analysis, Floating point representation of numbers, solution of algebraic and Transcendental Equations: Bisection method, fixed point Iteration method, the method of False Position, Newton Raphson method and Mullers method. Solution of linear systems, matrix inversion method, Gauss elimination method, Gauss-Seidel and Gauss-Jacobi iterative methods, modification of the Gauss method to compute the inverse, LU decomposition method. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Error analysis, Nonlinear equations, and Solution of a system of linear Equations
|
|||||||||||||||||||||||||||||
Errors and their analysis, Floating point representation of numbers, solution of algebraic and Transcendental Equations: Bisection method, fixed point Iteration method, the method of False Position, Newton Raphson method and Mullers method. Solution of linear systems, matrix inversion method, Gauss elimination method, Gauss-Seidel and Gauss-Jacobi iterative methods, modification of the Gauss method to compute the inverse, LU decomposition method. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Error analysis, Nonlinear equations, and Solution of a system of linear Equations
|
|||||||||||||||||||||||||||||
Errors and their analysis, Floating point representation of numbers, solution of algebraic and Transcendental Equations: Bisection method, fixed point Iteration method, the method of False Position, Newton Raphson method and Mullers method. Solution of linear systems, matrix inversion method, Gauss elimination method, Gauss-Seidel and Gauss-Jacobi iterative methods, modification of the Gauss method to compute the inverse, LU decomposition method. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Error analysis, Nonlinear equations, and Solution of a system of linear Equations
|
|||||||||||||||||||||||||||||
Errors and their analysis, Floating point representation of numbers, solution of algebraic and Transcendental Equations: Bisection method, fixed point Iteration method, the method of False Position, Newton Raphson method and Mullers method. Solution of linear systems, matrix inversion method, Gauss elimination method, Gauss-Seidel and Gauss-Jacobi iterative methods, modification of the Gauss method to compute the inverse, LU decomposition method. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Finite Differences, Interpolation, and Numerical differentiation and Integration
|
|||||||||||||||||||||||||||||
Finite differences: Forward difference, backward difference and shift operators, separation of symbols, Newton’s formulae for interpolation, Lagrange’s interpolation formulae, numerical differentiation. Numerical integration: Trapezoidal rule, Simpson’s one-third rule and Simpson’s three-eighth rule. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Finite Differences, Interpolation, and Numerical differentiation and Integration
|
|||||||||||||||||||||||||||||
Finite differences: Forward difference, backward difference and shift operators, separation of symbols, Newton’s formulae for interpolation, Lagrange’s interpolation formulae, numerical differentiation. Numerical integration: Trapezoidal rule, Simpson’s one-third rule and Simpson’s three-eighth rule. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Finite Differences, Interpolation, and Numerical differentiation and Integration
|
|||||||||||||||||||||||||||||
Finite differences: Forward difference, backward difference and shift operators, separation of symbols, Newton’s formulae for interpolation, Lagrange’s interpolation formulae, numerical differentiation. Numerical integration: Trapezoidal rule, Simpson’s one-third rule and Simpson’s three-eighth rule. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Finite Differences, Interpolation, and Numerical differentiation and Integration
|
|||||||||||||||||||||||||||||
Finite differences: Forward difference, backward difference and shift operators, separation of symbols, Newton’s formulae for interpolation, Lagrange’s interpolation formulae, numerical differentiation. Numerical integration: Trapezoidal rule, Simpson’s one-third rule and Simpson’s three-eighth rule. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Finite Differences, Interpolation, and Numerical differentiation and Integration
|
|||||||||||||||||||||||||||||
Finite differences: Forward difference, backward difference and shift operators, separation of symbols, Newton’s formulae for interpolation, Lagrange’s interpolation formulae, numerical differentiation. Numerical integration: Trapezoidal rule, Simpson’s one-third rule and Simpson’s three-eighth rule. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Numerical Solution of Ordinary Differential Equations
|
|||||||||||||||||||||||||||||
Numerical solution of ordinary differential equations, Taylor’s series, Picard’s method, Euler’s method, modified Euler’s method, Runge Kutta methods, second order (with proof) and fourth order (without proof). | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Numerical Solution of Ordinary Differential Equations
|
|||||||||||||||||||||||||||||
Numerical solution of ordinary differential equations, Taylor’s series, Picard’s method, Euler’s method, modified Euler’s method, Runge Kutta methods, second order (with proof) and fourth order (without proof). | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Numerical Solution of Ordinary Differential Equations
|
|||||||||||||||||||||||||||||
Numerical solution of ordinary differential equations, Taylor’s series, Picard’s method, Euler’s method, modified Euler’s method, Runge Kutta methods, second order (with proof) and fourth order (without proof). | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Numerical Solution of Ordinary Differential Equations
|
|||||||||||||||||||||||||||||
Numerical solution of ordinary differential equations, Taylor’s series, Picard’s method, Euler’s method, modified Euler’s method, Runge Kutta methods, second order (with proof) and fourth order (without proof). | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Numerical Solution of Ordinary Differential Equations
|
|||||||||||||||||||||||||||||
Numerical solution of ordinary differential equations, Taylor’s series, Picard’s method, Euler’s method, modified Euler’s method, Runge Kutta methods, second order (with proof) and fourth order (without proof). | |||||||||||||||||||||||||||||
Text Books And Reference Books:
| |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading
| |||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||
MAT641C - DISCRETE MATHEMATICS (2022 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
Course description: It is a fundamental course in combinatorics involving set theory, permutations and combinations, generating functions, recurrence relations and lattices. Course objectives: This course will help the learner to COBJ1. gain a familiarity with fundamental concepts of combinatorial mathematics. COBJ2. understand the methods and problem solving techniques of discrete mathematics COBJ3. apply knowledge to analyze and solve problems using models of discrete mathematics |
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO 1: On successful completion of the course, the students should be able to enhance research, inquiry, and analytical thinking abilities. CO 2: On successful completion of the course, the students should be able to apply the basics of combinatorics in analyzing problems. CO 3: On successful completion of the course, the students should be able to enhance problem-solving skills. |
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Combinatorics
|
|||||||||||||||||||||||||||||
Permutations and combinations, laws of set theory, Venn diagrams, relations and functions, Stirling numbers of the second kind, Pigeon hole principle. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Combinatorics
|
|||||||||||||||||||||||||||||
Permutations and combinations, laws of set theory, Venn diagrams, relations and functions, Stirling numbers of the second kind, Pigeon hole principle. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Combinatorics
|
|||||||||||||||||||||||||||||
Permutations and combinations, laws of set theory, Venn diagrams, relations and functions, Stirling numbers of the second kind, Pigeon hole principle. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Combinatorics
|
|||||||||||||||||||||||||||||
Permutations and combinations, laws of set theory, Venn diagrams, relations and functions, Stirling numbers of the second kind, Pigeon hole principle. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Combinatorics
|
|||||||||||||||||||||||||||||
Permutations and combinations, laws of set theory, Venn diagrams, relations and functions, Stirling numbers of the second kind, Pigeon hole principle. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Combinatorics
|
|||||||||||||||||||||||||||||
Permutations and combinations, laws of set theory, Venn diagrams, relations and functions, Stirling numbers of the second kind, Pigeon hole principle. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Combinatorics
|
|||||||||||||||||||||||||||||
Permutations and combinations, laws of set theory, Venn diagrams, relations and functions, Stirling numbers of the second kind, Pigeon hole principle. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Enumeration
|
|||||||||||||||||||||||||||||
Principle of inclusion and exclusion, generating functions, partitions of integers and recurrence relations. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Enumeration
|
|||||||||||||||||||||||||||||
Principle of inclusion and exclusion, generating functions, partitions of integers and recurrence relations. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Enumeration
|
|||||||||||||||||||||||||||||
Principle of inclusion and exclusion, generating functions, partitions of integers and recurrence relations. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Enumeration
|
|||||||||||||||||||||||||||||
Principle of inclusion and exclusion, generating functions, partitions of integers and recurrence relations. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Enumeration
|
|||||||||||||||||||||||||||||
Principle of inclusion and exclusion, generating functions, partitions of integers and recurrence relations. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Enumeration
|
|||||||||||||||||||||||||||||
Principle of inclusion and exclusion, generating functions, partitions of integers and recurrence relations. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Enumeration
|
|||||||||||||||||||||||||||||
Principle of inclusion and exclusion, generating functions, partitions of integers and recurrence relations. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Lattice Theory
|
|||||||||||||||||||||||||||||
Partially ordered set, lattices and their properties, duality principle, lattice homomorphisms, product lattices, modular and distributive lattices, Boolean lattices. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Lattice Theory
|
|||||||||||||||||||||||||||||
Partially ordered set, lattices and their properties, duality principle, lattice homomorphisms, product lattices, modular and distributive lattices, Boolean lattices. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Lattice Theory
|
|||||||||||||||||||||||||||||
Partially ordered set, lattices and their properties, duality principle, lattice homomorphisms, product lattices, modular and distributive lattices, Boolean lattices. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Lattice Theory
|
|||||||||||||||||||||||||||||
Partially ordered set, lattices and their properties, duality principle, lattice homomorphisms, product lattices, modular and distributive lattices, Boolean lattices. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Lattice Theory
|
|||||||||||||||||||||||||||||
Partially ordered set, lattices and their properties, duality principle, lattice homomorphisms, product lattices, modular and distributive lattices, Boolean lattices. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Lattice Theory
|
|||||||||||||||||||||||||||||
Partially ordered set, lattices and their properties, duality principle, lattice homomorphisms, product lattices, modular and distributive lattices, Boolean lattices. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Lattice Theory
|
|||||||||||||||||||||||||||||
Partially ordered set, lattices and their properties, duality principle, lattice homomorphisms, product lattices, modular and distributive lattices, Boolean lattices. | |||||||||||||||||||||||||||||
Text Books And Reference Books:
| |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading
| |||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||
MAT641D - NUMBER THEORY (2022 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
Course Description: This course is an introduction to elementary topics of analytical number theory. Topics such as divisibility, congruences and number-theoretic functions are discussed in this course. Some of the applications of these concepts are also included. Course Objectives: This course will help the learner to COBJ1. engage in sound mathematical thinking and reasoning. COBJ2. analyze, evaluate, or solve problems for given data or information. COBJ3. understand and utilize mathematical functions and empirical principles and processes. COBJ4. develop critical thinking skills, communication skills, and empirical and quantitative skills. |
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO1: After the completion of this course, learners are expected to effectively express the concepts and results of number theory. CO2: After the completion of this course, learners are expected to understand the logic and methods behind the proofs in number theory. CO3: After the completion of this course, learners are expected to solve challenging problems in number theory. CO4: After the completion of this course, learners are expected to present specific topics and prove various ideas with mathematical rigour. |
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Divisibility
|
|||||||||||||||||||||||||||||
The division algorithm, the greatest common divisor, the Euclidean algorithm, the linear Diophantine equation, the fundamental theorem of arithmetic, distribution of primes. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Divisibility
|
|||||||||||||||||||||||||||||
The division algorithm, the greatest common divisor, the Euclidean algorithm, the linear Diophantine equation, the fundamental theorem of arithmetic, distribution of primes. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Divisibility
|
|||||||||||||||||||||||||||||
The division algorithm, the greatest common divisor, the Euclidean algorithm, the linear Diophantine equation, the fundamental theorem of arithmetic, distribution of primes. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Divisibility
|
|||||||||||||||||||||||||||||
The division algorithm, the greatest common divisor, the Euclidean algorithm, the linear Diophantine equation, the fundamental theorem of arithmetic, distribution of primes. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Divisibility
|
|||||||||||||||||||||||||||||
The division algorithm, the greatest common divisor, the Euclidean algorithm, the linear Diophantine equation, the fundamental theorem of arithmetic, distribution of primes. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Divisibility
|
|||||||||||||||||||||||||||||
The division algorithm, the greatest common divisor, the Euclidean algorithm, the linear Diophantine equation, the fundamental theorem of arithmetic, distribution of primes. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Divisibility
|
|||||||||||||||||||||||||||||
The division algorithm, the greatest common divisor, the Euclidean algorithm, the linear Diophantine equation, the fundamental theorem of arithmetic, distribution of primes. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Linear Congruence
|
|||||||||||||||||||||||||||||
Basic properties of congruences, systems of residues, number conversions, linear congruences and Chinese remainder theorem, a system of linear congruences in two variables, Fermat’s Little Theorem and pseudoprimes, Wilson’s Theorem. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Linear Congruence
|
|||||||||||||||||||||||||||||
Basic properties of congruences, systems of residues, number conversions, linear congruences and Chinese remainder theorem, a system of linear congruences in two variables, Fermat’s Little Theorem and pseudoprimes, Wilson’s Theorem. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Linear Congruence
|
|||||||||||||||||||||||||||||
Basic properties of congruences, systems of residues, number conversions, linear congruences and Chinese remainder theorem, a system of linear congruences in two variables, Fermat’s Little Theorem and pseudoprimes, Wilson’s Theorem. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Linear Congruence
|
|||||||||||||||||||||||||||||
Basic properties of congruences, systems of residues, number conversions, linear congruences and Chinese remainder theorem, a system of linear congruences in two variables, Fermat’s Little Theorem and pseudoprimes, Wilson’s Theorem. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Linear Congruence
|
|||||||||||||||||||||||||||||
Basic properties of congruences, systems of residues, number conversions, linear congruences and Chinese remainder theorem, a system of linear congruences in two variables, Fermat’s Little Theorem and pseudoprimes, Wilson’s Theorem. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Linear Congruence
|
|||||||||||||||||||||||||||||
Basic properties of congruences, systems of residues, number conversions, linear congruences and Chinese remainder theorem, a system of linear congruences in two variables, Fermat’s Little Theorem and pseudoprimes, Wilson’s Theorem. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Linear Congruence
|
|||||||||||||||||||||||||||||
Basic properties of congruences, systems of residues, number conversions, linear congruences and Chinese remainder theorem, a system of linear congruences in two variables, Fermat’s Little Theorem and pseudoprimes, Wilson’s Theorem. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Number Theoretic Functions
|
|||||||||||||||||||||||||||||
The Greatest Integer Function, Euler’s Phi-Function, Euler’s theorem, Some Properties of Phi-function. Applications of Number Theory: Hashing functions, pseudorandom Numbers, check bits, cryptography.
| |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Number Theoretic Functions
|
|||||||||||||||||||||||||||||
The Greatest Integer Function, Euler’s Phi-Function, Euler’s theorem, Some Properties of Phi-function. Applications of Number Theory: Hashing functions, pseudorandom Numbers, check bits, cryptography.
| |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Number Theoretic Functions
|
|||||||||||||||||||||||||||||
The Greatest Integer Function, Euler’s Phi-Function, Euler’s theorem, Some Properties of Phi-function. Applications of Number Theory: Hashing functions, pseudorandom Numbers, check bits, cryptography.
| |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Number Theoretic Functions
|
|||||||||||||||||||||||||||||
The Greatest Integer Function, Euler’s Phi-Function, Euler’s theorem, Some Properties of Phi-function. Applications of Number Theory: Hashing functions, pseudorandom Numbers, check bits, cryptography.
| |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Number Theoretic Functions
|
|||||||||||||||||||||||||||||
The Greatest Integer Function, Euler’s Phi-Function, Euler’s theorem, Some Properties of Phi-function. Applications of Number Theory: Hashing functions, pseudorandom Numbers, check bits, cryptography.
| |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Number Theoretic Functions
|
|||||||||||||||||||||||||||||
The Greatest Integer Function, Euler’s Phi-Function, Euler’s theorem, Some Properties of Phi-function. Applications of Number Theory: Hashing functions, pseudorandom Numbers, check bits, cryptography.
| |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Number Theoretic Functions
|
|||||||||||||||||||||||||||||
The Greatest Integer Function, Euler’s Phi-Function, Euler’s theorem, Some Properties of Phi-function. Applications of Number Theory: Hashing functions, pseudorandom Numbers, check bits, cryptography.
| |||||||||||||||||||||||||||||
Text Books And Reference Books:
| |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading
| |||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||
MAT641E - FINANCIAL MATHEMATICS (2022 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
Course Description:Financial Mathematics deals with the solving of financial problems by using Mathematical methods. This course aims at introducing the basic ideas of deterministic mathematics of finance. The course focuses on imparting sound knowledge on elementary notions like simple interest, complex interest (annual and non-annual), annuities (varying and non-varying), loans and bonds. Course objectives: This course will help the learner to COBJ 1: gain familiarity in solving problems on Interest rates and Level Annuitiesd COBJ 2: derive formulae for different types of varying annuities and solve its associated problems COBJ 3: gain in depth knowledge on Loans and Bonds and hence create schedules for Loan Repayment and Bond Amortization Schedules. |
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO1: On successful completion of the course, the students should be able to deal with the elementary notions like simple interest, compound interest and Annuities. CO2: On successful completion of the course, the students should be able to solve simple problems on interest rates, annuities, varying annuities, non-annual interest rates, loans and bonds. CO3: On successful completion of the course, the students should be able to apply the formulae appropriately in solving problems that mimics real life scenario. |
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Interest Rates, Factors and Level Annuities
|
|||||||||||||||||||||||||||||
Interest Rates, Rate of discount, Nominal rates of interest and discount, Constant force of interest, Force of interest, Inflation, Equations of Value and Yield Rates, Annuity-Immediate, Annuity-Due, Perpetuities, Deferred Annuities and values on any date, Outstanding Loan Balances (OLB) | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Interest Rates, Factors and Level Annuities
|
|||||||||||||||||||||||||||||
Interest Rates, Rate of discount, Nominal rates of interest and discount, Constant force of interest, Force of interest, Inflation, Equations of Value and Yield Rates, Annuity-Immediate, Annuity-Due, Perpetuities, Deferred Annuities and values on any date, Outstanding Loan Balances (OLB) | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Interest Rates, Factors and Level Annuities
|
|||||||||||||||||||||||||||||
Interest Rates, Rate of discount, Nominal rates of interest and discount, Constant force of interest, Force of interest, Inflation, Equations of Value and Yield Rates, Annuity-Immediate, Annuity-Due, Perpetuities, Deferred Annuities and values on any date, Outstanding Loan Balances (OLB) | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Interest Rates, Factors and Level Annuities
|
|||||||||||||||||||||||||||||
Interest Rates, Rate of discount, Nominal rates of interest and discount, Constant force of interest, Force of interest, Inflation, Equations of Value and Yield Rates, Annuity-Immediate, Annuity-Due, Perpetuities, Deferred Annuities and values on any date, Outstanding Loan Balances (OLB) | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Interest Rates, Factors and Level Annuities
|
|||||||||||||||||||||||||||||
Interest Rates, Rate of discount, Nominal rates of interest and discount, Constant force of interest, Force of interest, Inflation, Equations of Value and Yield Rates, Annuity-Immediate, Annuity-Due, Perpetuities, Deferred Annuities and values on any date, Outstanding Loan Balances (OLB) | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Interest Rates, Factors and Level Annuities
|
|||||||||||||||||||||||||||||
Interest Rates, Rate of discount, Nominal rates of interest and discount, Constant force of interest, Force of interest, Inflation, Equations of Value and Yield Rates, Annuity-Immediate, Annuity-Due, Perpetuities, Deferred Annuities and values on any date, Outstanding Loan Balances (OLB) | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Interest Rates, Factors and Level Annuities
|
|||||||||||||||||||||||||||||
Interest Rates, Rate of discount, Nominal rates of interest and discount, Constant force of interest, Force of interest, Inflation, Equations of Value and Yield Rates, Annuity-Immediate, Annuity-Due, Perpetuities, Deferred Annuities and values on any date, Outstanding Loan Balances (OLB) | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Interest Rates, Factors and Level Annuities
|
|||||||||||||||||||||||||||||
Interest Rates, Rate of discount, Nominal rates of interest and discount, Constant force of interest, Force of interest, Inflation, Equations of Value and Yield Rates, Annuity-Immediate, Annuity-Due, Perpetuities, Deferred Annuities and values on any date, Outstanding Loan Balances (OLB) | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Interest Rates, Factors and Level Annuities
|
|||||||||||||||||||||||||||||
Interest Rates, Rate of discount, Nominal rates of interest and discount, Constant force of interest, Force of interest, Inflation, Equations of Value and Yield Rates, Annuity-Immediate, Annuity-Due, Perpetuities, Deferred Annuities and values on any date, Outstanding Loan Balances (OLB) | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Varying Annuities
|
|||||||||||||||||||||||||||||
Non-level Annuities, Annuities with payments in Geometric Progression, Annuities with payment in Arithmetic Progression, Annuity symbols for non-integral terms, Annuities with payments less/more frequent than each interest period and payments in Arithmetic Progression, Continuously Payable Annuities. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Varying Annuities
|
|||||||||||||||||||||||||||||
Non-level Annuities, Annuities with payments in Geometric Progression, Annuities with payment in Arithmetic Progression, Annuity symbols for non-integral terms, Annuities with payments less/more frequent than each interest period and payments in Arithmetic Progression, Continuously Payable Annuities. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Varying Annuities
|
|||||||||||||||||||||||||||||
Non-level Annuities, Annuities with payments in Geometric Progression, Annuities with payment in Arithmetic Progression, Annuity symbols for non-integral terms, Annuities with payments less/more frequent than each interest period and payments in Arithmetic Progression, Continuously Payable Annuities. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Varying Annuities
|
|||||||||||||||||||||||||||||
Non-level Annuities, Annuities with payments in Geometric Progression, Annuities with payment in Arithmetic Progression, Annuity symbols for non-integral terms, Annuities with payments less/more frequent than each interest period and payments in Arithmetic Progression, Continuously Payable Annuities. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Varying Annuities
|
|||||||||||||||||||||||||||||
Non-level Annuities, Annuities with payments in Geometric Progression, Annuities with payment in Arithmetic Progression, Annuity symbols for non-integral terms, Annuities with payments less/more frequent than each interest period and payments in Arithmetic Progression, Continuously Payable Annuities. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Varying Annuities
|
|||||||||||||||||||||||||||||
Non-level Annuities, Annuities with payments in Geometric Progression, Annuities with payment in Arithmetic Progression, Annuity symbols for non-integral terms, Annuities with payments less/more frequent than each interest period and payments in Arithmetic Progression, Continuously Payable Annuities. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Varying Annuities
|
|||||||||||||||||||||||||||||
Non-level Annuities, Annuities with payments in Geometric Progression, Annuities with payment in Arithmetic Progression, Annuity symbols for non-integral terms, Annuities with payments less/more frequent than each interest period and payments in Arithmetic Progression, Continuously Payable Annuities. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Varying Annuities
|
|||||||||||||||||||||||||||||
Non-level Annuities, Annuities with payments in Geometric Progression, Annuities with payment in Arithmetic Progression, Annuity symbols for non-integral terms, Annuities with payments less/more frequent than each interest period and payments in Arithmetic Progression, Continuously Payable Annuities. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Varying Annuities
|
|||||||||||||||||||||||||||||
Non-level Annuities, Annuities with payments in Geometric Progression, Annuities with payment in Arithmetic Progression, Annuity symbols for non-integral terms, Annuities with payments less/more frequent than each interest period and payments in Arithmetic Progression, Continuously Payable Annuities. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Loans Repayment and Bonds
|
|||||||||||||||||||||||||||||
Amortized loans and Amortization Schedules, The sinking fund method, Loans with other repayment patterns, Yield rate examples and other repayment patterns, Bond symbols and basic price formula, Other pricing formula for bonds, Bond Amortization Schedules, Valuing a bond after its date of issue. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Loans Repayment and Bonds
|
|||||||||||||||||||||||||||||
Amortized loans and Amortization Schedules, The sinking fund method, Loans with other repayment patterns, Yield rate examples and other repayment patterns, Bond symbols and basic price formula, Other pricing formula for bonds, Bond Amortization Schedules, Valuing a bond after its date of issue. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Loans Repayment and Bonds
|
|||||||||||||||||||||||||||||
Amortized loans and Amortization Schedules, The sinking fund method, Loans with other repayment patterns, Yield rate examples and other repayment patterns, Bond symbols and basic price formula, Other pricing formula for bonds, Bond Amortization Schedules, Valuing a bond after its date of issue. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Loans Repayment and Bonds
|
|||||||||||||||||||||||||||||
Amortized loans and Amortization Schedules, The sinking fund method, Loans with other repayment patterns, Yield rate examples and other repayment patterns, Bond symbols and basic price formula, Other pricing formula for bonds, Bond Amortization Schedules, Valuing a bond after its date of issue. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Loans Repayment and Bonds
|
|||||||||||||||||||||||||||||
Amortized loans and Amortization Schedules, The sinking fund method, Loans with other repayment patterns, Yield rate examples and other repayment patterns, Bond symbols and basic price formula, Other pricing formula for bonds, Bond Amortization Schedules, Valuing a bond after its date of issue. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Loans Repayment and Bonds
|
|||||||||||||||||||||||||||||
Amortized loans and Amortization Schedules, The sinking fund method, Loans with other repayment patterns, Yield rate examples and other repayment patterns, Bond symbols and basic price formula, Other pricing formula for bonds, Bond Amortization Schedules, Valuing a bond after its date of issue. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Loans Repayment and Bonds
|
|||||||||||||||||||||||||||||
Amortized loans and Amortization Schedules, The sinking fund method, Loans with other repayment patterns, Yield rate examples and other repayment patterns, Bond symbols and basic price formula, Other pricing formula for bonds, Bond Amortization Schedules, Valuing a bond after its date of issue. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Loans Repayment and Bonds
|
|||||||||||||||||||||||||||||
Amortized loans and Amortization Schedules, The sinking fund method, Loans with other repayment patterns, Yield rate examples and other repayment patterns, Bond symbols and basic price formula, Other pricing formula for bonds, Bond Amortization Schedules, Valuing a bond after its date of issue. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Loans Repayment and Bonds
|
|||||||||||||||||||||||||||||
Amortized loans and Amortization Schedules, The sinking fund method, Loans with other repayment patterns, Yield rate examples and other repayment patterns, Bond symbols and basic price formula, Other pricing formula for bonds, Bond Amortization Schedules, Valuing a bond after its date of issue. | |||||||||||||||||||||||||||||
Text Books And Reference Books: L. J. F. Vaaler and J. W. Daniel, Mathematical interest theory. Mathematical Association of America, 2009. | |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading
| |||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||
MAT651 - COMPLEX ANALYSIS USING PYTHON (2022 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||||||||||||||||||
Max Marks:50 |
Credits:2 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
Course Description: This course will enable students to have hands on experience in constructing analytic functions, verifying harmonic functions, illustrating Cauchy’s integral theorem and bilinear transformations and in illustrating different types of sequences and series using Python. Course Objectives: This course will help the learner to COBJ 1:Python language using jupyter interface COBJ 2:Solving basic arithmetic problems using cmath built-in commands COBJ 3:Solving problems using cmath. |
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO 1: On successful completion of the course, the students should be able to acquire proficiency in using Python and cmath functions for processing complex numbers. CO 2: On successful completion of the course, the students should be able to skillful in using Python modules to implement Milne-Thompson method. CO 3: On successful completion of the course, the students should be able to expertise in illustrating harmonic functions and demonstrating Cauchy's integral theorem Representation of conformal mappings using Matplotlib. |
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Text Books And Reference Books: H P Langtangen, A Primer on Scientific Programming with Python, 2nd ed., Springer, 2016. | |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading
| |||||||||||||||||||||||||||||
Evaluation Pattern The course is evaluated based on continuous internal assessments (CIA) and the lab e-record. The parameters for evaluation under each component and the mode of assessment are given below.
| |||||||||||||||||||||||||||||
MAT651A - MECHANICS USING PYTHON (2022 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||||||||||||||||||
Max Marks:50 |
Credits:2 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
Course Description: This course aims at enabling the students to explore and study the statics and dynamics of particles in a detailed manner using Python. This course is designed with a learner-centric approach wherein the students will acquire mastery in understanding mechanics using Python. Course objectives: This course will help the learner to COBJ 1: acquire skill in usage of suitable functions/packages of Python. COBJ 2: gain proficiency in using Python to solve problems on Mechanics. |
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO1: On successful completion of the course, the students should be able to acquire proficiency in using different functions of Python to study Differential Calculus. Mechanics. CO2: On successful completion of the course, the students should be able to demonstrate the use of Python to understand and interpret the dynamical aspects of Python. CO3: On successful completion of the course, the students should be able to use Python to evaluate the resultant of forces and check for equilibrium state of the forces. CO4: On successful completion of the course, the students should be able to be familiar with the built-in functions to find moment and couple. |
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Text Books And Reference Books:
| |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading A. Saha, Doing Math with Python: Use Programming to Explore Algebra, Statistics, Calculus, and More!, no starch press: San Fransisco, 2015. | |||||||||||||||||||||||||||||
Evaluation Pattern The course is evaluated based on continuous internal assessments (CIA) and the lab e-record. The parameters for evaluation under each component and the mode of assessment are given below.
| |||||||||||||||||||||||||||||
MAT651B - NUMERICAL METHODS USING PYTHON (2022 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||||||||||||||||||
Max Marks:50 |
Credits:2 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
Course Description: This course will help the students to have an in depth knowledge of various numerical methods required in scientific and technological applications. Students will gain hands on experience in using Python for illustrating various numerical techniques. Course Objectives: This course will help the learner to COBJ 1: develop the basic understanding of numerical algorithms and skills to implement algorithms to solve mathematical problems using Python. COBJ 2: develop the basic understanding of the applicability and limitations of the techniques. |
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO1.: On successful completion of the course, the students should be able to implement a numerical solution method in a well-designed, well-documented Python program code. CO2.: On successful completion of the course, the students should be able to interpret the numerical solutions that were obtained in regard to their accuracy and suitability for applications CO3.: On successful completion of the course, the students should be able to present and interpret numerical results in an informative way. |
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Text Books And Reference Books: J. Kiusalaas, Numerical methods in engineering with Python 3, Cambridge University press, 2013. | |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading H. Fangohr, Introduction to Python for Computational Science and Engineering (A beginner’s guide), University of Southampton, 2015. | |||||||||||||||||||||||||||||
Evaluation Pattern The course is evaluated based on continuous internal assessments (CIA) and the lab e-record. The parameters for evaluation under each component and the mode of assessment are given below.
| |||||||||||||||||||||||||||||
MAT651C - DISCRETE MATHEMATICS USING PYTHON (2022 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||||||||||||||||||
Max Marks:50 |
Credits:2 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
Course description: This course aims at providing hands on experience in using Python functions to illustrate the notions of combinatorics, set theory and relations. Course objectives: This course will help the learner to COBJ1. gain a familiarity with programs on fundamental concepts of Combinatorial Mathematics COBJ2. understand and apply knowledge to solve combinatorial problems using Python |
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO1: On successful completion of the course, the students should be able to attain sufficient skills in using Python functions CO2: On successful completion of the course, the students should be able to demonstrate programming skills in solving problems related to applications of computational mathematics. |
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Text Books And Reference Books:
| |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading
| |||||||||||||||||||||||||||||
Evaluation Pattern The course is evaluated based on continuous internal assessments (CIA) and the lab e-record. The parameters for evaluation under each component and the mode of assessment are given below.
| |||||||||||||||||||||||||||||
MAT651D - NUMBER THEORY USING PYTHON (2022 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||||||||||||||||||
Max Marks:50 |
Credits:2 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
Course Description: This course will help the students to gain hands-on experience in using Python for illustrating various number theory concepts such as the divisibility, distribution of primes, number conversions, congruences and applications of number theory. Course Objectives: This course will help the learner to COBJ1. be familiar with the built- in functions required to deal with number theoretic concepts and operations. COBJ2. develop programming skills to solve various number theoretic concepts. COBJ3. gain proficiency in symbolic computation using python. |
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO1: On successfully completing the course, the students should be able to use Python to solve problems in number theory, number conversions. CO2: On successfully completing the course, the students should be able to use Python to demonstrate the understanding of number theory concepts. CO3: On successfully completing the course, the students should be able to use Python to model and solve practical problems using number theoretic concepts. |
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Text Books And Reference Books: J.C. Bautista, Mathematics with Python Programming, Lulu.com, 2014. | |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading M. Litvin and G. Litvin, Mathematics for the Digital Age and Programming in Python, Skylight Publishing, 2010. | |||||||||||||||||||||||||||||
Evaluation Pattern The course is evaluated based on continuous internal assessments (CIA) and the lab e-record. The parameters for evaluation under each component and the mode of assessment are given below.
| |||||||||||||||||||||||||||||
MAT651E - FINANCIAL MATHEMATICS USING EXCEL AND PYTHON (2022 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||||||||||||||||||
Max Marks:50 |
Credits:2 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
Course Description: The course aims at providing hands on experience in using Excel/Python programming to illustrate the computation of constant/varying force of interest, continuously payable varying/non-varying annuities, increasing/decreasing annuity immediate/due, loans and bonds. Course objectives: This course will help the learner to COBJ1. aacquire skill in solving problems on Financial Mathematics using Python. COBJ2. gain proficiency in using the Python programming skills to solve problems on Financial Mathematics. |
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO1: On successful completion of the course, the students should be able to demonstrate sufficient skills in using Python programming language for solving problems on Financial Mathematics. CO2: On successful completion of the course, the students should be able to apply the notions on various types of interests, annuities, loans and bonds, by solving problems using Python. |
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Text Books And Reference Books:
| |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading
| |||||||||||||||||||||||||||||
Evaluation Pattern The course is evaluated based on continuous internal assessments (CIA) and the lab e-record. The parameters for evaluation under each component and the mode of assessment are given below.
| |||||||||||||||||||||||||||||
MAT681 - PROJECT ON MATHEMATICAL MODELS (2022 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:75 |
No of Lecture Hours/Week:5 |
||||||||||||||||||||||||||||
Max Marks:150 |
Credits:5 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
Course description: The course aims at providing hands on experience in analyzing practical problems by formulating the corresponding mathematical models. Course objectives: This course will help the learner to COBJ1. Develop positive attitude, knowledge and competence for research in Mathematics |
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO1.: On successful completion of the course, the students should be able to demonstrate analytical skills. CO2.: On successful completion of the course, the students should be able to apply computational skills in Mathematics |
Unit-1 |
Teaching Hours:75 |
PROJECT
|
|
Students are given a choice of topics in Mathematical modelling at the undergraduate level with the approval of HOD. Each candidate will work under the supervision of the faculty. Project Coordinator will allot the supervisor for each candidate in consultation with the HOD at the end of the fifth semester. Project need not be based on original research work. Project could be based on the review of research papers that are at the undergraduate level. Each candidate has to submit a dissertation on the project topic followed by viva voce examination. The viva voce will be conducted by the committee constituted by the head of the department which will have an external and an internal examiner. The student must secure 50% of the marks to pass the examination. The candidates who fail must redo the project as per the university regulations. Proposed Topics for Project:
| |
Unit-1 |
Teaching Hours:75 |
PROJECT
|
|
Students are given a choice of topics in Mathematical modelling at the undergraduate level with the approval of HOD. Each candidate will work under the supervision of the faculty. Project Coordinator will allot the supervisor for each candidate in consultation with the HOD at the end of the fifth semester. Project need not be based on original research work. Project could be based on the review of research papers that are at the undergraduate level. Each candidate has to submit a dissertation on the project topic followed by viva voce examination. The viva voce will be conducted by the committee constituted by the head of the department which will have an external and an internal examiner. The student must secure 50% of the marks to pass the examination. The candidates who fail must redo the project as per the university regulations. Proposed Topics for Project:
| |
Unit-1 |
Teaching Hours:75 |
PROJECT
|
|
Students are given a choice of topics in Mathematical modelling at the undergraduate level with the approval of HOD. Each candidate will work under the supervision of the faculty. Project Coordinator will allot the supervisor for each candidate in consultation with the HOD at the end of the fifth semester. Project need not be based on original research work. Project could be based on the review of research papers that are at the undergraduate level. Each candidate has to submit a dissertation on the project topic followed by viva voce examination. The viva voce will be conducted by the committee constituted by the head of the department which will have an external and an internal examiner. The student must secure 50% of the marks to pass the examination. The candidates who fail must redo the project as per the university regulations. Proposed Topics for Project:
| |
Unit-1 |
Teaching Hours:75 |
PROJECT
|
|
Students are given a choice of topics in Mathematical modelling at the undergraduate level with the approval of HOD. Each candidate will work under the supervision of the faculty. Project Coordinator will allot the supervisor for each candidate in consultation with the HOD at the end of the fifth semester. Project need not be based on original research work. Project could be based on the review of research papers that are at the undergraduate level. Each candidate has to submit a dissertation on the project topic followed by viva voce examination. The viva voce will be conducted by the committee constituted by the head of the department which will have an external and an internal examiner. The student must secure 50% of the marks to pass the examination. The candidates who fail must redo the project as per the university regulations. Proposed Topics for Project:
| |
Unit-1 |
Teaching Hours:75 |
PROJECT
|
|
Students are given a choice of topics in Mathematical modelling at the undergraduate level with the approval of HOD. Each candidate will work under the supervision of the faculty. Project Coordinator will allot the supervisor for each candidate in consultation with the HOD at the end of the fifth semester. Project need not be based on original research work. Project could be based on the review of research papers that are at the undergraduate level. Each candidate has to submit a dissertation on the project topic followed by viva voce examination. The viva voce will be conducted by the committee constituted by the head of the department which will have an external and an internal examiner. The student must secure 50% of the marks to pass the examination. The candidates who fail must redo the project as per the university regulations. Proposed Topics for Project:
| |
Text Books And Reference Books: As per the field of reserach. | |
Essential Reading / Recommended Reading As per the field of reserach. | |
Evaluation Pattern
| |
PHY631 - MODERN PHYSICS - II (2022 Batch) | |
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
Max Marks:100 |
Credits:3 |
Course Objectives/Course Description |
|
This course is envisaged to provide a strong foundation of basics of modern physics. Molecular physics, Lasers, solids, superconductivity and nuclear physics. |
|
Learning Outcome |
|
CO1: Develop a fundamental understanding of molecular spectroscopy vis-Ã -vis infrared and Raman spectroscopy. CO2: Acquire a basic understanding about the working of LASER. CO3: Get familiarized with the free electron theory and its application in solids. CO4: Gain a brief overview about the nuclear structure and learn the working principles of nuclear detectors and accelerators. |
Unit-1 |
Teaching Hours:15 |
Molecular physics
|
|
Molecular spectra: Types of motions in a molecule - electronic, vibration, rotation; general features of band spectra (compared to atomic spectra), molecular energy distributions in spectrum, energy states and spectra of molecules; the diatomic molecule as a rigid rotator, non rigid rotator, the rotational energy levels and their spectrum. Information about the moment of inertia and inter nuclear distances from the pure rotational spectrum. Raman effect: The Rayleigh’s Scattering, the Raman Scattering. Quantum theory of Raman effect and Raman spectrum-Stokes and anti-Stokes lines. Applications of Raman effect:Complementary character of Raman and IR spectra. Lasers: spontaneous emission, stimulated emission and stimulated absorption, conditions for laser action-coherence, population inversion, types of lasers: Gas lasers (He-Ne), semiconductor lasers,applications of Lasers. | |
Unit-1 |
Teaching Hours:15 |
Molecular physics
|
|
Molecular spectra: Types of motions in a molecule - electronic, vibration, rotation; general features of band spectra (compared to atomic spectra), molecular energy distributions in spectrum, energy states and spectra of molecules; the diatomic molecule as a rigid rotator, non rigid rotator, the rotational energy levels and their spectrum. Information about the moment of inertia and inter nuclear distances from the pure rotational spectrum. Raman effect: The Rayleigh’s Scattering, the Raman Scattering. Quantum theory of Raman effect and Raman spectrum-Stokes and anti-Stokes lines. Applications of Raman effect:Complementary character of Raman and IR spectra. Lasers: spontaneous emission, stimulated emission and stimulated absorption, conditions for laser action-coherence, population inversion, types of lasers: Gas lasers (He-Ne), semiconductor lasers,applications of Lasers. | |
Unit-2 |
Teaching Hours:15 |
Condensed matter Physics
|
|
Free-Electron Theory of Metals: Introduction - Drude and Lorentz classical theory, expressions for electrical conductivity- Ohm's law, thermal conductivity - Wiedmann-Franz law - density of states for free electrons - Fermi-Dirac distribution function and Fermi energy – expression for Fermi energy and kinetic energy at absolute zero and above absolute zero. Band Theory of Solids: Introduction, formation of energy bands, distinction between metals, insulators and semiconductors; semiconductors - intrinsic semiconductors - concept of holes- concept of effective mass - derivation of expression for carrier concentration (for electrons and holes) and electrical conductivity - extrinsic semiconductors-impurity states - energy band diagram and the Fermi level - Hall effect in metals and semiconductors, Photoconductivity, Solar cells. Superconductivity: Introduction, experimental facts - zero resistivity - critical field - critical current density- persistent currents - Meissner effect, type I and type II superconductors, Cooper pairs - BCS Theory (basic ideas). | |
Unit-2 |
Teaching Hours:15 |
Condensed matter Physics
|
|
Free-Electron Theory of Metals: Introduction - Drude and Lorentz classical theory, expressions for electrical conductivity- Ohm's law, thermal conductivity - Wiedmann-Franz law - density of states for free electrons - Fermi-Dirac distribution function and Fermi energy – expression for Fermi energy and kinetic energy at absolute zero and above absolute zero. Band Theory of Solids: Introduction, formation of energy bands, distinction between metals, insulators and semiconductors; semiconductors - intrinsic semiconductors - concept of holes- concept of effective mass - derivation of expression for carrier concentration (for electrons and holes) and electrical conductivity - extrinsic semiconductors-impurity states - energy band diagram and the Fermi level - Hall effect in metals and semiconductors, Photoconductivity, Solar cells. Superconductivity: Introduction, experimental facts - zero resistivity - critical field - critical current density- persistent currents - Meissner effect, type I and type II superconductors, Cooper pairs - BCS Theory (basic ideas). | |
Unit-3 |
Teaching Hours:15 |
Nuclear Physics
|
|
Structure and properties of Nuclei: Radius,Nuclear charge - Rutherford’s theory of alpha particle scattering - derivation of Rutherford’s scattering formula - Nuclear mass: Bainbridge mass spectrograph. Alpha decay: Range and disintegration energy of alpha particles, Range, ionization, specific ionization and Geiger–Nuttal law -brief description of characteristics of alpha ray spectrum - Gamow’s theory of alpha decay. Beta decay: types of beta decay (electron, positron decay and electron capture) - Characteristics of beta spectrum - Pauli’s neutrino hypothesis Nuclear reactions: Q-value and Types of nuclear reactions. Detectors and Accelerators: GM counter, Scintillation counter, linear accelerators, Cyclotron – principle and working. | |
Unit-3 |
Teaching Hours:15 |
Nuclear Physics
|
|
Structure and properties of Nuclei: Radius,Nuclear charge - Rutherford’s theory of alpha particle scattering - derivation of Rutherford’s scattering formula - Nuclear mass: Bainbridge mass spectrograph. Alpha decay: Range and disintegration energy of alpha particles, Range, ionization, specific ionization and Geiger–Nuttal law -brief description of characteristics of alpha ray spectrum - Gamow’s theory of alpha decay. Beta decay: types of beta decay (electron, positron decay and electron capture) - Characteristics of beta spectrum - Pauli’s neutrino hypothesis Nuclear reactions: Q-value and Types of nuclear reactions. Detectors and Accelerators: GM counter, Scintillation counter, linear accelerators, Cyclotron – principle and working. | |
Text Books And Reference Books:
1. Modern Physics, R.Murugesan, S. Chand and Company, New Delhi, 1996. 2. Solid State Physics, S O Pillai, New Age International (P) Ltd., New Delhi, 2009. 3. Concepts of Modern Physics, Beiser ,III Edition, student edition, New Delhi, 1981. | |
Essential Reading / Recommended Reading
1. Introduction to Modern Physics,R.B. Singh, New Age International,New Delhi, 2002. 2. The Feynmann, Lectures on physics, Narosa Publishing House, New Delhi, 2008. 3. Modern Physics, Sehgal Chopra Sehgal, S. Chand & sons, New Delhi, 1998. 4. Elements of Modern Physics,S.H. Patil ,TMH publishing, New Delhi, 1984. 5. Modern Physics Part I and 2, S.N. Ghosal, S.Chand and Company, New Delhi 1996 | |
Evaluation Pattern CIA I Assignment - 10 Marks CIA II - Mid sem - 25 Marks CIA III - 10 Marks Attendance/Punctuality: 05 ESE: 50 Marks Evaluation will be based on tests, short assignments and presentations. | |
PHY641A - SOLID STATE PHYSICS (2022 Batch) | |
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
Max Marks:100 |
Credits:03 |
Course Objectives/Course Description |
|
This course is intended to make the students understand the basic concepts of solid-state physics such as geometry of crystalline state, production of X-rays and diffraction from solids. It enables the students to explore the fundamental concepts of lattice dynamics and the various physical properties of solids. |
|
Learning Outcome |
|
CO1: To understand the structure of solids and lattice dynamics
CO2: To gain skills necessary to understand crystal structures using X-ray diffraction technique
CO3: To demonstrate knowledge and understanding on magnetic, dielectric and ferroelectric properties of materials
|
Unit-1 |
Teaching Hours:16 |
|||||||||||||||||||||||||||||||||||||||
Crystal structure of solids
|
||||||||||||||||||||||||||||||||||||||||
Crystal structure: Amorphous and crystalline materials, lattice, basis and crystal structure, lattice translation vectors, unit cell, primitive and non-primitive cells; Bravais lattices- two dimensional and three dimensional lattice types, seven crystal systems; atoms per unit cell, co-ordination number, atomic radius and packing fraction (simple cubic, fcc and bcc), types of close packed structures (sodium chloride and hexagonal zinc sulphide structures); symmetry operations and symmetry elements (translation, rotation, inversion and mirror operations); lattice planes, Miller indices, spacing between lattice planes of cubic crystals; reciprocal lattice: Concept, geometrical construction, vector algebraic discussion, reciprocal lattice vector and properties, Brillouin zones. Crystal bonding: cohesive energy, types of bonding-ionic bond, covalent bond and metallic bond, properties and applications. | ||||||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:16 |
|||||||||||||||||||||||||||||||||||||||
Crystal structure of solids
|
||||||||||||||||||||||||||||||||||||||||
Crystal structure: Amorphous and crystalline materials, lattice, basis and crystal structure, lattice translation vectors, unit cell, primitive and non-primitive cells; Bravais lattices- two dimensional and three dimensional lattice types, seven crystal systems; atoms per unit cell, co-ordination number, atomic radius and packing fraction (simple cubic, fcc and bcc), types of close packed structures (sodium chloride and hexagonal zinc sulphide structures); symmetry operations and symmetry elements (translation, rotation, inversion and mirror operations); lattice planes, Miller indices, spacing between lattice planes of cubic crystals; reciprocal lattice: Concept, geometrical construction, vector algebraic discussion, reciprocal lattice vector and properties, Brillouin zones. Crystal bonding: cohesive energy, types of bonding-ionic bond, covalent bond and metallic bond, properties and applications. | ||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:12 |
|||||||||||||||||||||||||||||||||||||||
Crystal diffraction and lattice dynamics
|
||||||||||||||||||||||||||||||||||||||||
Crystal diffraction: X-rays- Production of X-rays, continuous and characteristic X-rays. Mosley's law; scattering of X-rays, diffraction of X-rays by crystals- Bragg’s law, powder diffraction method, Laue and rotating crystal methods, atomic and structure factor, systematic absences due to lattice types, determination of crystal structure and applications. Lattice dynamics: Introduction, elastic waves, lattice vibrations and phonons, dynamics of linear monoatomic lattice, symmetry in k-space, number of modes in one dimensional lattice, dynamics of diatomic lattice, acoustical and optical phonons, density of states for a three dimensional solid. | ||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:12 |
|||||||||||||||||||||||||||||||||||||||
Crystal diffraction and lattice dynamics
|
||||||||||||||||||||||||||||||||||||||||
Crystal diffraction: X-rays- Production of X-rays, continuous and characteristic X-rays. Mosley's law; scattering of X-rays, diffraction of X-rays by crystals- Bragg’s law, powder diffraction method, Laue and rotating crystal methods, atomic and structure factor, systematic absences due to lattice types, determination of crystal structure and applications. Lattice dynamics: Introduction, elastic waves, lattice vibrations and phonons, dynamics of linear monoatomic lattice, symmetry in k-space, number of modes in one dimensional lattice, dynamics of diatomic lattice, acoustical and optical phonons, density of states for a three dimensional solid. | ||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:17 |
|||||||||||||||||||||||||||||||||||||||
Properties of solids
|
||||||||||||||||||||||||||||||||||||||||
Specific heat of solids: Dulong and Petit’s law, Einstein’s and Debye’s theories of specific heat of solids, T3 law. Magnetic properties of matter: Classification of magnetic materials–dia-, para-, ferro- and ferri-magnetic materials, classical Langevin’s theory of diamagnetism and paramagnetism, Curie’s law, Weiss’s theory of ferromagnetism and ferromagnetic domains, discussion of BH curve, hysteresis and energy loss. Dielectric properties of matter: Dipole moment and polarization, electric field of a dipole, local electric field at an atom, dielectric constant and its measurement, polarizability, Clausius-Mossotti equation, electronic polarizability, classical theory of electronic polarizability, dipolar polarizability, applications. Ferroelectric Properties of Materials:Structural phase transition, Classification of crystals, Piezoelectric effect, Pyroelectric effect, Ferroelectric effect, Electrostrictive effect, Curie-Weiss Law, Ferroelectric domains, PE hysteresis loop. | ||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:17 |
|||||||||||||||||||||||||||||||||||||||
Properties of solids
|
||||||||||||||||||||||||||||||||||||||||
Specific heat of solids: Dulong and Petit’s law, Einstein’s and Debye’s theories of specific heat of solids, T3 law. Magnetic properties of matter: Classification of magnetic materials–dia-, para-, ferro- and ferri-magnetic materials, classical Langevin’s theory of diamagnetism and paramagnetism, Curie’s law, Weiss’s theory of ferromagnetism and ferromagnetic domains, discussion of BH curve, hysteresis and energy loss. Dielectric properties of matter: Dipole moment and polarization, electric field of a dipole, local electric field at an atom, dielectric constant and its measurement, polarizability, Clausius-Mossotti equation, electronic polarizability, classical theory of electronic polarizability, dipolar polarizability, applications. Ferroelectric Properties of Materials:Structural phase transition, Classification of crystals, Piezoelectric effect, Pyroelectric effect, Ferroelectric effect, Electrostrictive effect, Curie-Weiss Law, Ferroelectric domains, PE hysteresis loop. | ||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: [1]. Kittel, C. (1996). Introduction to solid state physics, New York: Wiley. [2]. Wahab, M. A. (2011). Solid state physics, New Delhi: Narosa Publications. [3]. Ali Omar, M. (1999). Elementary solid-state physics, New Delhi: Addison-Wesley Publishing Company. [4]. Srivastava, J. P. (2006). Elements of solid-state physics (2nd ed.). New Delhi: Prentice Hall of India, Pvt Ltd. | ||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading [5]. Azaroff, L. V. (2004). Introduction to solids, New Delhi: Tata Mc-Graw Hill. [6]. Ashcroft, N. W. & Mermin, N. D. (2014). Solid state physics, New Delhi: Cengage Learning India Pvt Ltd. [7]. Ibach, H., & Luth, H. (2009). Solid state physics, Berlin Heidelberg: Springer-Verlag. | ||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| ||||||||||||||||||||||||||||||||||||||||
PHY641B - QUANTUM MECHANICS (2022 Batch) | ||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
|||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
|||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
||||||||||||||||||||||||||||||||||||||||
This course is an elective paper which gives students an option to learn about additional topics in quantum mechanics. Students are introduced to the applications of time-independent and time-independent Schrodinger wave equations to bound systems such as hydrogen atom. |
||||||||||||||||||||||||||||||||||||||||
Learning Outcome |
||||||||||||||||||||||||||||||||||||||||
CO1: Explain the development of quantum theory and its real applications in physics. CO2: Appreciate the significance of Schrodinger equations in the dynamics of bound systems. CO3: Illustrate the role of operators and their connection with observables, and uncertainty. CO4: Acquire knowledge on spin, angular momentum states, and angular momentum addition rules |
Unit-1 |
Teaching Hours:15 |
|||||||||||||||||||||||
Basics of quantum mechanics
|
||||||||||||||||||||||||
Linear operators, Hermitian operators; eigenfunctions and eigenvalues, orthonormalization, completeness; physical interpretation of wave function, admissible conditions on wave functions and the principle of superposition; Position, momentum, Hamiltonian and energy operators, commutation relations, Schrodinger equation – time-dependent and time-independent Schrodinger wave equation. Probability density and probability current density; expectation value, Ehrenfest theorem; basic postulates of quantum mechanics. | ||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
|||||||||||||||||||||||
Basics of quantum mechanics
|
||||||||||||||||||||||||
Linear operators, Hermitian operators; eigenfunctions and eigenvalues, orthonormalization, completeness; physical interpretation of wave function, admissible conditions on wave functions and the principle of superposition; Position, momentum, Hamiltonian and energy operators, commutation relations, Schrodinger equation – time-dependent and time-independent Schrodinger wave equation. Probability density and probability current density; expectation value, Ehrenfest theorem; basic postulates of quantum mechanics. | ||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
|||||||||||||||||||||||
Simple applications of time independent Schrodinger wave equation
|
||||||||||||||||||||||||
General discussion of bound states in an arbitrary potential- continuity of wave function, boundary condition, Particle in a potential box of infinite height – one and three dimensional, eigenvalues and eigenfunctions (with the derivation of expression for energy), degeneracy, the density of states; Potential barrier transmission– transmission and reflection coefficients for E<V0 and E>V0; Simple harmonic oscillator – energy levels, eigenvalues and eigenfunctions using Frobenius method, Hermite polynomials, ground state, zero-point energy. | ||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
|||||||||||||||||||||||
Simple applications of time independent Schrodinger wave equation
|
||||||||||||||||||||||||
General discussion of bound states in an arbitrary potential- continuity of wave function, boundary condition, Particle in a potential box of infinite height – one and three dimensional, eigenvalues and eigenfunctions (with the derivation of expression for energy), degeneracy, the density of states; Potential barrier transmission– transmission and reflection coefficients for E<V0 and E>V0; Simple harmonic oscillator – energy levels, eigenvalues and eigenfunctions using Frobenius method, Hermite polynomials, ground state, zero-point energy. | ||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
|||||||||||||||||||||||
Quantum theory of hydrogen atom
|
||||||||||||||||||||||||
Angular momentum – expressions for cartesian components and square of (orbital) angular momentum; operators and their commutation relations, eigenvalues and eigenfunctions in polar coordinates, eigenvalues and eigenfunctions of L2 and Lz. Hydrogen atom: Central potential, time-independent Schrodinger equation in spherical polar coordinates; separation of variables for second-order partial differential equation; principal, orbital and magnetic quantum numbers – n, l, ml; Energy eigenvalues, Radial wave function R(r). Electron probability density – radial and angular variations; shapes of the probability density for ground and first excited states; s, p, d,….shells. | ||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
|||||||||||||||||||||||
Quantum theory of hydrogen atom
|
||||||||||||||||||||||||
Angular momentum – expressions for cartesian components and square of (orbital) angular momentum; operators and their commutation relations, eigenvalues and eigenfunctions in polar coordinates, eigenvalues and eigenfunctions of L2 and Lz. Hydrogen atom: Central potential, time-independent Schrodinger equation in spherical polar coordinates; separation of variables for second-order partial differential equation; principal, orbital and magnetic quantum numbers – n, l, ml; Energy eigenvalues, Radial wave function R(r). Electron probability density – radial and angular variations; shapes of the probability density for ground and first excited states; s, p, d,….shells. | ||||||||||||||||||||||||
Text Books And Reference Books:
[1].A. Beiser, Perspectives of Modern Physics, McGraw-Hill, 1968. [2].R. Eisberg and R. Resnick, Quantum Mechanics, 2ndEdn., Wiley, 2002. [3].G. Aruldhas, Quantum Mechanics, 2ndEdn., PHI Learning of India, 2002. [4].D. J. Griffith, Introduction to Quantum Mechanics, 2ndEdn., Pearson Education, 2005. [5].W. Greiner, Quantum Mechanics, 4thEdn., Springer, 2001. | ||||||||||||||||||||||||
Essential Reading / Recommended Reading [1]B. C. Reed, Quantum Mechanics, Jones and Bartlett Learning, 2008. [2].A. Bohm, Quantum Mechanics: Foundations and Applications, 3rdEdn., Springer, 1993. [3].D. A. B. Miller, Quantum Mechanics for Scientists and Engineers, Cambridge University Press, 2008. | ||||||||||||||||||||||||
Evaluation Pattern Evaluation Pattern
| ||||||||||||||||||||||||
PHY641C - NUCLEAR AND PARTICLE PHYSICS (2022 Batch) | ||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
|||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
|||||||||||||||||||||||
Course Objectives/Course Description |
||||||||||||||||||||||||
This course has been conceptualized in order to give students an exposure to the fundamentals of nuclear and particle physics. Students will be introduced to the new ideas such as properties and structure of nucleus, interaction of nuclear radiations with matter and the principles behind working of radiation detectors, fundamental particles and their interactions, particle accelerators. Unit II caters to regional and national needs. |
||||||||||||||||||||||||
Learning Outcome |
||||||||||||||||||||||||
CO1: Acquiring the knowledge of basics of nuclear physics, which enables them to use it for understanding the structure and properties of nucleus CO2: Able to understand the nuclear interactions with matter and applications of nuclear
radiations. CO3: Able to acquire working knowledge of radiation detectors. |
Unit-1 |
Teaching Hours:15 |
|||||||||||||||||||||
Properties and Structure of Nucleus
|
||||||||||||||||||||||
Properties of nucleus: Constituents of nucleus and their intrinsic properties, quantitative facts about size, mass, charge density, matter density, binding energy, average binding energy and its variation with mass number, main features of binding energy versus mass number curve. Nuclear models: Liquid drop model of nucleus, semi-empirical mass formula, binding energy expression and significance of various terms in it. Fermi gas model - degenerate fermi gas, Fermi energy, fermi momentum, total energy of nucleus, role of asymmetry energy in the stability of a nucleus. Nuclear shell model - basic assumptions of shell model, concept of mean field, residual interaction, evidence for nuclear shell structure, nuclear magic numbers, concept of nuclear force, its characteristics and experimental evidence (qualitative). | ||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
|||||||||||||||||||||
Properties and Structure of Nucleus
|
||||||||||||||||||||||
Properties of nucleus: Constituents of nucleus and their intrinsic properties, quantitative facts about size, mass, charge density, matter density, binding energy, average binding energy and its variation with mass number, main features of binding energy versus mass number curve. Nuclear models: Liquid drop model of nucleus, semi-empirical mass formula, binding energy expression and significance of various terms in it. Fermi gas model - degenerate fermi gas, Fermi energy, fermi momentum, total energy of nucleus, role of asymmetry energy in the stability of a nucleus. Nuclear shell model - basic assumptions of shell model, concept of mean field, residual interaction, evidence for nuclear shell structure, nuclear magic numbers, concept of nuclear force, its characteristics and experimental evidence (qualitative). | ||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
|||||||||||||||||||||
Interaction of Nuclear Radiations with Matter and Detectors
|
||||||||||||||||||||||
Interaction of nuclear radiations with matter: Interaction of heavy charged particles with matter - energy loss due to ionization and excitation (Bethe-Bloch formula). Interaction of light charged particles with matter - range, energy loss of light charged particles, range energy relation for beta particles, mass absorption coefficient for beta particles. Interaction of γ-rays with matter - Photoelectric effect, Compton scattering, Pair production and their interaction cross sections, linear and mass attenuation coefficients. Detectors: Gas detectors - estimation of electric field, mobility of particle, construction and working of ionization chamber and GM Counter. Basic principle, construction and working of scintillation detectors, types of scintillators and their properties. Semiconductor detectors (Si(Li) & Ge(Li)) - for charge particle and photon detection, concept of charge carrier and mobility, construction and working. | ||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
|||||||||||||||||||||
Interaction of Nuclear Radiations with Matter and Detectors
|
||||||||||||||||||||||
Interaction of nuclear radiations with matter: Interaction of heavy charged particles with matter - energy loss due to ionization and excitation (Bethe-Bloch formula). Interaction of light charged particles with matter - range, energy loss of light charged particles, range energy relation for beta particles, mass absorption coefficient for beta particles. Interaction of γ-rays with matter - Photoelectric effect, Compton scattering, Pair production and their interaction cross sections, linear and mass attenuation coefficients. Detectors: Gas detectors - estimation of electric field, mobility of particle, construction and working of ionization chamber and GM Counter. Basic principle, construction and working of scintillation detectors, types of scintillators and their properties. Semiconductor detectors (Si(Li) & Ge(Li)) - for charge particle and photon detection, concept of charge carrier and mobility, construction and working. | ||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
|||||||||||||||||||||
Elementary particles and accelerators
|
||||||||||||||||||||||
Elementary particles: Production and properties of π, µ and K mesons, types of particle interactions, types of elementary particles and their families, classifications based on spin and type of interactions, Symmetries and conservation laws - energy, linear momentum, angular momentum, charge, parity, baryon number, lepton number, isospin, strangeness, Concept of quark model - types of quarks and their properties, color quantum number and gluons. Particle accelerators: Van-de Graaff generator (Tandem accelerator), Linear accelerator, Cyclotron (principle, construction and working), Accelerator facility available in India. | ||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
|||||||||||||||||||||
Elementary particles and accelerators
|
||||||||||||||||||||||
Elementary particles: Production and properties of π, µ and K mesons, types of particle interactions, types of elementary particles and their families, classifications based on spin and type of interactions, Symmetries and conservation laws - energy, linear momentum, angular momentum, charge, parity, baryon number, lepton number, isospin, strangeness, Concept of quark model - types of quarks and their properties, color quantum number and gluons. Particle accelerators: Van-de Graaff generator (Tandem accelerator), Linear accelerator, Cyclotron (principle, construction and working), Accelerator facility available in India. | ||||||||||||||||||||||
Text Books And Reference Books: [1]. Krane, K. S. (2008). Introductory nuclear physics. New York: Wiley India Pvt. Ltd. [2]. Griffith, D. (2008). Introduction to elementary particles (2 nd ed.). Weinheim: John Wiley & Sons. [3]. Goshal, S. N. (2005). Nuclear physics. New Delhi: Chand & Co. [4]. Heyde, K. (2004). Basic ideas and concepts in nuclear physics - An introductory approach (3 rd ed.). Philadelphia, USA: Institute of Physics Publishing, CRC Press. [5]. Knoll, G. F. (2000). Radiation detection and measurement. New York, NY: John Wiley and Sons. [6]. Cohen, B. L. (1998). Concepts of nuclear physics. New York, NY: Tata McGraw Hill. | ||||||||||||||||||||||
Essential Reading / Recommended Reading [7]. Dunlap, R. A. (2004). Introduction to the physics of nuclei and particles (1 st ed.). Belmont CA, USA: Thomson/Brooks-Cole. [8]. Blatt, J. M., & Weisskopf, V. F. (1991). Theoretical nuclear physics. New York, NY: Dover Publishing Inc. [9]. Halzen, F., & Martin, A. D. (1984). Quarks and leptons. New Delhi: Wiley India. | ||||||||||||||||||||||
Evaluation Pattern
| ||||||||||||||||||||||
PHY651 - MODERN PHYSICS - II LAB (2022 Batch) | ||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
|||||||||||||||||||||
Max Marks:50 |
Credits:2 |
|||||||||||||||||||||
Course Objectives/Course Description |
||||||||||||||||||||||
Experiments related to molecules, solid state physics and nuclear physics included in this course provides a better understanding of the theory. |
||||||||||||||||||||||
Learning Outcome |
||||||||||||||||||||||
CO1: Develop better clarity of the theory through the respective experiments. CO2: Enhance the analytical and interpretation skills. |
Unit-1 |
Teaching Hours:30 |
||||||||||||||||
List of experiments
|
|||||||||||||||||
1. To determine the absorption lines in the rotational spectrum of Iodine vapour. 2. Analysis of molecular spectra - rotational-vibrational. 3. Resistivity of a material by four probe technique. 4. Determination of thermal conductivity of a material. 5. Determination of energy gap of a semiconductor 6. Spectral response of a selenium photo cell (λ vs. I) 7. Hall effect – determination of carrier concentration in a semiconductor/metal 8. Demonstration experiment: Magnetic levitation by a superconductor 9. Verification of inverse square law (applicable to intensity of gamma rays emitted by a radioactive substance) using a GM counter. 10. Characteristics of a Geiger – Muller (GM) counter. 11. Analysis of rotational Raman spectrum | |||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||
List of experiments
|
|||||||||||||||||
1. To determine the absorption lines in the rotational spectrum of Iodine vapour. 2. Analysis of molecular spectra - rotational-vibrational. 3. Resistivity of a material by four probe technique. 4. Determination of thermal conductivity of a material. 5. Determination of energy gap of a semiconductor 6. Spectral response of a selenium photo cell (λ vs. I) 7. Hall effect – determination of carrier concentration in a semiconductor/metal 8. Demonstration experiment: Magnetic levitation by a superconductor 9. Verification of inverse square law (applicable to intensity of gamma rays emitted by a radioactive substance) using a GM counter. 10. Characteristics of a Geiger – Muller (GM) counter. 11. Analysis of rotational Raman spectrum | |||||||||||||||||
Text Books And Reference Books:
1. Physics Laboratory – I , PHE -03 (L) Indira Gandhi National Open University School of Sciences. 2. A Lab manual of Physics for undergraduate classes, Vani Publications, New Delhi, 2002. 3. Advanced course in practical physics,Chattopadhyay, Rakshit and Saha, New Central Publishers, Kolkota, 2000. 4. Advanced Practical Physics,S PSingh, Pragati Prakasan Publishing Company, 2010.
| |||||||||||||||||
Essential Reading / Recommended Reading
1. Advanced Practical Physics,Worsnop and Flint, Methuen & Co., Prentice Hall of India Third edition, Pearson Education, 2005. 2. Physics through experiments,B. Saraf, Vikas Publishing House, New Delhi, 1992. | |||||||||||||||||
Evaluation Pattern
| |||||||||||||||||
PHY651A - SOLID STATE PHYSICS LAB (2022 Batch) | |||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||||||
Max Marks:50 |
Credits:02 |
||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||
Experiments related to solid state physics and elementary properties provide a better understanding of the theory. |
|||||||||||||||||
Learning Outcome |
|||||||||||||||||
CO1: Develop a better understanding of fundamentals of X-ray crystallography through diffraction experiments. CO2: Enhance their analytical and interpretation skills. CO3: Estimate the dielectric and magnetic properties of solids. |
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||
List of experiments
|
|||||||||||||||||||||||||
| |||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||
List of experiments
|
|||||||||||||||||||||||||
| |||||||||||||||||||||||||
Text Books And Reference Books: [1]. Advanced Practical Physics, Worsnop and Flint, Methuen & Co., Prentice Hall of India Third Edition, Pearson Education, 2005. [2]. Physics through experiments, B. Saraf, Vikas Publishing House, New Delhi, 1992. | |||||||||||||||||||||||||
Essential Reading / Recommended Reading [3]. Physics Laboratory – I, PHE -03 (L) Indira Gandhi National Open University School of Sciences. [4]. A Lab manual of Physics for undergraduate classes, Vani Publications, New Delhi, 2002. [5]. Advanced course in practical physics, Chattopadhyay, Rakshit and Saha, New Central Publishers, Kolkata, 2000. [6]. Advanced Practical Physics, S. P. Singh, Pragati Prakasan Publishing Company, 2010. | |||||||||||||||||||||||||
Evaluation Pattern Continuous Internal Assessment (CIA) 60%, End Semester Examination (ESE) 40%
| |||||||||||||||||||||||||
PHY651B - QUANTUM MECHANICS LAB (2022 Batch) | |||||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||||||||||||||
Max Marks:50 |
Credits:2 |
||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||
The objective of this module is to introduce the students to problem solving skills on various topics in quantum mechanics. |
|||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||
CO1: Demonstrate the skills of problem solving and understand the concepts clearly. CO2: Develop the ability to write programs in python language. |
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||
List of exercises/experiments
|
|||||||||||||||||||||
1. Black body radiation – Graphical study of black body radiation curve - Rayleigh-Jeans and Wien’s displacement laws. 2. Particle in a 1D box – Graphical study of wavefunctions and probability densities. 3. Quantum harmonic oscillator – Graphical study of wavefunctions, probability densities and spacing of energy levels. 4. Potential barrier penetration – Graphical study of Reflection and transmission coefficients. 5. Hydrogen atom – Graphical study of radial wavefunctions and probability densities. 6. Non-interacting particles in an infinite square well: Study of energy states of the system. 7. Potential step - Graphical study of reflection and transmission coefficients 8. Problem solving-1. 9. Problem solving-2 | |||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||
List of exercises/experiments
|
|||||||||||||||||||||
1. Black body radiation – Graphical study of black body radiation curve - Rayleigh-Jeans and Wien’s displacement laws. 2. Particle in a 1D box – Graphical study of wavefunctions and probability densities. 3. Quantum harmonic oscillator – Graphical study of wavefunctions, probability densities and spacing of energy levels. 4. Potential barrier penetration – Graphical study of Reflection and transmission coefficients. 5. Hydrogen atom – Graphical study of radial wavefunctions and probability densities. 6. Non-interacting particles in an infinite square well: Study of energy states of the system. 7. Potential step - Graphical study of reflection and transmission coefficients 8. Problem solving-1. 9. Problem solving-2 | |||||||||||||||||||||
Text Books And Reference Books:
[1].A. Beiser, Perspectives of Modern Physics, McGraw-Hill, 1968.
[2].R. Eisberg and R. Resnick, Quantum Mechanics, 2nd Edn., Wiley, 2002.
[3].G. Aruldhas, Quantum Mechanics, 2nd Edn., PHI Learning of India, 2002. | |||||||||||||||||||||
Essential Reading / Recommended Reading [1] D. A. B. Miller, Quantum Mechanics for Scientists and Engineers, Cambridge University Press, 2008. [2].D. J. Griffith, Introduction to Quantum Mechanics, 2nd Ed., Pearson Education, 2005. [3].G. L. Squires, Problems in Quantum Mechanics with Solutions, Cambridge University Press, 2002. | |||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||
PHY651C - NUCLEAR AND PARTICLE PHYSICS LAB (2022 Batch) | |||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||||||||||
Max Marks:50 |
Credits:2 |
||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||
Students are expected to learn the topics such as binding energy, mass absorption coefficient for beta rays, mass attenuation coefficients for gamma rays, working of GM counter, NaI(Tl) and CdTe detectors. |
|||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||
CO1: A better understanding of the theory through the respective experiments. CO2: Hands-on experience of working with detector spectrometers. CO3: Analytical and interpretation skills. |
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||
NUCLEAR PHYSICS-LAB
|
|||||||||||||||||||||
1. Computation of binding energy of nuclei. 2. Mass absorption coefficient for beta particles in copper using GM counter. 3. Range and end point energy of beta particles in aluminum. 4. Mass attenuation coefficient of gamma rays in lead using GM counter. 5. Resolution of NaI(Tl) detector spectrometer. 6. Computation of energy loss for protons and alpha particles in aluminum and lead. 7. Calibration of NaI(Tl) detector spectrometer. 8. Demonstration of working of CdTe X-ray detector spectrometer. | |||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||
NUCLEAR PHYSICS-LAB
|
|||||||||||||||||||||
1. Computation of binding energy of nuclei. 2. Mass absorption coefficient for beta particles in copper using GM counter. 3. Range and end point energy of beta particles in aluminum. 4. Mass attenuation coefficient of gamma rays in lead using GM counter. 5. Resolution of NaI(Tl) detector spectrometer. 6. Computation of energy loss for protons and alpha particles in aluminum and lead. 7. Calibration of NaI(Tl) detector spectrometer. 8. Demonstration of working of CdTe X-ray detector spectrometer. | |||||||||||||||||||||
Text Books And Reference Books: [1] Goshal, S. N. (2005). Nuclear physics. New Delhi: Chand & Co. [2].Knoll, G. F. (2000). Radiation detection and measurement. New York, NY: John Wiley and Sons. | |||||||||||||||||||||
Essential Reading / Recommended Reading [1].Kapoor, S. S. and Ramamurthy, V. S. (2012). Nuclear radiation detectors. New Delhi: New Age International Publishers. [2].Krane, K. S. (2008). Introductory nuclear physics. New York: Wiley India Pvt. Ltd. | |||||||||||||||||||||
Evaluation Pattern Student will be evaluated based on 1. whether a student has come prepared for the practical such drawing experimental diagram, tabular column, formulae etc. 2. whether the student is able to complete the experiments and do the calculations during allotted hours. 3. viva on the experiments performed.
|